Date Manipulation Routines
Copyright (c) 1998-99 by Enterprise-Wide Computing, Inc.
by Thomas Wm. Madron
Email: info@ewc-inc.com

Table of Contents

LICENSE AGREEMENT ... e 4
STATEMENT OF COPYRIGHT e 4
GENERAL CONDITIONS e e 4
RIGHTS OF USAGE e e 4
RIGHTS OF DISTRIBUTION e 5
DISCLAIMER OF WARRANTY . e 5
TECHNICAL SUPPORT . .. e e e e 5

Package CoNtentSt e e 6

INStallation 7

INtrOdUCTION . . o e 8

Issues in Date Manipulations i 9

Overview of the Date ROULINESottt e e e e e 10
The Rosenfelder Collection i e 11
The Covington Collection e e 11
The Grillo and Robertson Collection i 12
The Madron Collectiont e e 12
ANOte Of Caution 12

UsSINg EWCDATE. DLL ... e e e e e e e 14
INCIUdING EWCDATE.INCot e e e e 14
Calling the Functions and Procedurescouiiiiiiiiiiiinnana 14

Julian and Julian-like NUMDbDEIS e e 15
JUIAN L 16
DAY NUM 17
DAY O Y A . .. e 18
COMP DAL . . . 19
JUHANDALEo 20

CompDayNUmMber ... 21

Retrieving a Date fromaJulian Number i 22

oMY A . . ot 23
CompMONth ... 24
CompDayOfMonth 25
JUITODAtE . ..o 26
CalDat ... 27
Other Date Counting Utility FUNCLIONS i e 28
=Y | =T 29
DayOfWWeEEK ... 30
DaysInMonth e 31
AP Y Al ..o 32
Labeling Days and Months e 33
LongDayName 34
ShortDayName 35
LongMoNnthNameo 36
ShortMONtNNAME . .. 37
Specialized Utility ROULINES e e e 38
CurrentDate 39
GetTodaysDatet 40
T O0aY ..o 41
StandardDate 42
FirstSuNday 43
ANY DAY .. 44
WeeKDay e 45
CompDayName 46
MONthFromNamME e e 47
ParseEnglishDate 48
Daylight Savings o 49
DAy AV S It ... 50
DaySaVENd e 51
DayLightSavingso e 52
Local Utility FUNCLIONS e e 53
FEALIGN L 54
DFAC . . . 55
DNt . 56
FloOr o 57
ST OK .o 58

SaAMPIE PrOgram .. 59

Validity Testingo e 62

Bibliography 64

LICENSE AGREEMENT

This license agreement covers your use of the Enterprise-Wide Computing, Inc. EWCD ATE.D LL, its source
code, docum entation, and executable files, hereinafter referred to as "the Product".

The Product is Copyright (c) 1998-99 by E nterprise-Wide Computing, Inc. You may use it and distribute it
accordingto thisfollowing License Agreement. If you do notagree with these terms, please remove the
Product from your system. By incorporating the Productin your work or distributing the Product to others you
implicitly agree to these license terms.

This License Agreement coversthe currentversion of The Product. Enterprise-Wide Computing, Inc. reserves
the right to modify the terms of this License Agreement at any moment, and witho ut prior notification, in
future releases of The Product.

STATEMENT OF COPYRIGHT
The Product is, and remains, copyright 1998-98 by Enterprise-W ide Computing, Inc.

GENERAL CONDITIONS

The Product consists ofa ready-to-use DLL (EWCDATE.DLL), the source code in BASIC that can be
compiled by PowerBasic PBDL L5 and later, an include file containing all appropriate D ECLA RE state ments
for use with the PowerBasic 32-bitcompilers, PBDLL5 and later, and PB/CC 1 and later, and the
documentation for the package (EWCD ATE.PBF).

You may freely use and distribute the Product DLL with any program that uses components of the DLL. The
source code is provided to assist the user in modifying or expanding the components of the DLL. The source

code, as distributed, remains copyrighted by Enterprise-Wide Computing, Inc. exceptas other copyrights may
apply.

RIGHTS OF USAGE

You may freely and atno additional cost use the Productin any project, commercial, academic, military, or
private, so long as you respect the License Agreement. The License Agreement does not affect any software
except the Product. In particular, any application that uses the Product does not itself fall under the License
Agreement. EWCDATE.DLL may be freely distributed with any product or project usingcomponents of
EWCDATE.DLL.

You may modify any part of the Product, including sources and documentation, except this License
Agreement, which you may not modify.

You must clearly indicate any modifications at the start of each source file. The user of any modified Product
code must know that the source file is not original.

At your discretion, you may rewrite or reuse any part of the Product so that your derived code is not obviously
part of the Product. This derived code does not fall under the Product License Agreement directly, butyou
must include a credit at the start of each source file indicating the original authorship and source of the code,

and a statement of copyright as follows:

"Parts copyright (c) 1998-99 by E nterprise-Wide Com puting, Inc."

EWCDATE.DLL Page 4 of 64

RIGHTS OF DISTRIBUTION

You may not redistribute the original Product in any form, either free or for a fee, without purchasing
additional licenses except EWCDATE.DLL in association with any program or product using the components
of the DLL.

At no time will Enterprise-Wide Computing, Inc. associate itself with any distribution of the Product except
that supplied from Enterprise-Wide C omputing, Inc.

DISCLAIMER OF WARRANTY

The Product is provided as a commercial product in the hope that it will be useful. It is provided "as-is",
without warranty of any kind, either expressed orimplied, including, but notlimited to, the implied warranties
of merchantability and fitness for a particular purpose. T he entire risk as to determining the suitability, quality
and performance of the Product is with you. Should the Product prove defective, the full cost of repair,
servicing, or correction lies with you.

TECHNICAL SUPPORT

Limited technical supportcan be had from support@ewc-net.com.

Published by Enterprise-Wide Computing, Inc.
URL: http://ewcnet.com; Email: info@ewc-inc.com
June 27, 1999

EWCDATE.DLL Page 5 of 64

Package Contents

This package of date routines consists of the following files:

EWCDATE.DLL 32-bit Windows DL L containing all routines described in this
document.

EWCDATE.BAS Source code for EWCDATE.DLL.

EWCDATE.INC Include file for PowerBasic Console Compiler (pbcc).

EWCDATE.PDF Documentation in PDF file format. Requires AcroRead 2.1 or
later.

TSTDT.BAS Test program exercising all functions and procedures in this
package.

TEST.BAS Validity testing program for routines that calculate a Julian Number
or its functional equivalent.

README.TXT Installation instructions.

EWCDATE.DLL Page 6 of 64

Installation

After unzipping the distribution archive into a tem porary directory, copy/move EWCDATE.DLL to
C:\windows\system (for Win95/98) or C:\winnt\system32 (for Win NT), or wherever you have put your
Windows system directory. Copy/move the other files to any convenient location. This package does not make
use of any other libraries, although you might note that there are additional date functions available through
the Windows API.

To use the subroutines in this package with the PowerBasic PBCC (Console Compiler) or PBDLL simply add
the following include statement at the top of your program(s):

$INCLUDE EWCDATE.INC
The EWCDATE.INC file mustbe where it can be found by the compiler oraccessed with a fully qualified

file specification on the include statement. EW CDATE.INC contains correct declare statements for all
routines in EWCDATE.DLL.

EWCDATE.DLL Page 7 of 64

Introduction

This file documents a 32-bit windows d Il that contains a total of 37 date manipulation and support routines.
The techniques and algorithms used in the implementation of these routines can be found in the bibliography
at the end of this file. We have been collecting these routines since the early 1980s and all have passed through
a number of versions of Basic, now implemented for compilation by PowerBasic's DLL compiler, v. 6. Some of
the routines even started life in other languages, usually Fortran, but sometimes in Pascal.

There is some overlapping, in terms of functionality, of some of the routines. This has arisen as a byproduct of
the sources of various of the routines, plus the factthat there are several ways to deal with the same or similar
issues.

EWCDATE.DLL Page 8 of 64

Issues in Date Manipulations

The mostcommon problem in manipulating dates is to find the length oftime, measured in days, between two
dates. Various disciplines need to know the elapsed time between historical events, measured in some
standard fashion. This is a common problem in astronomy, information technology, and sometimes in history.
The general solution to this issue is to calculate the dates in question asa sequential number of days from
some starting point, do whatever addition or subtraction is necessary, then convert the resulting sequential
number back to a common format of month, day, and year. These sequential numbers are often, but
incorrectly, termed Julian Calendar dates. Only one specific method for calculating dates in terms of a
sequence of daysis properly called a Julian period or date.

The Julian period, a chronological system now used chiefly by astronomers and based on the consecutive
numbering of days from Jan. 1,4713 BC. Not to be confused with the Julian calendar, the Julian period was
proposed by the scholar Joseph Justus Scaliger in 1583 and named by him for his father, Julius Cesar Scaliger.
Joseph Scaliger proposed a period of 7,980 years of numbered days to be used in determining time elapsed
between various historical events otherwise recorded only in different chronologies, eras, or calendars. The
length of 7,980 yearswas chosen as the product of 28 times 19 times 15; these respectively, are the numbers of
years in the so-called solar cycle of the Julian calendar in which dates recur on the same days of the week; the
lunar or Metonic cycle, after which the phases of the Moon recur on a particular day in the solar year, or year
of the seasons; and the cycle of indiction, originally a schedule of periodic taxes or government requisitions in
ancient Rome. The epoch, or starting point, of 4713 BC was chosen as the nearest pastyear in which the three
cycles began together.

The Julian period or date is often confused with the Julian Calendar, also called OLD STYLE CALENDAR,
a dating system established by Julius Caesar as a reform of the Roman republican calendar. Caesar, advised by
the Alexandrian astronomer Sosigees, made the new calendar solar, not lunar, and he took the length of the
solar year as 365 1/4 days. The Gregorian calendar, also called NEW STYLE CALEND AR, is the solar
dating system now in general use. Itwas proclaimed in 1582 by Pope Gregory XIII as a reform of the Julian
calendar. By the Julian reckoning, the solaryear comprised 365 1/4 days; the intercalation of a "leap day"
every four years was intended to maintain correspondence between the calendar and the seasons. A slight
inaccuracy in the measurement (the solar year comprising more precisely 365 days, 5 hours, 48 minutes, 46
seconds) caused the calendar dates of the seasons to regress almost one day per century.

Joseph Scaliger proposed his system in order to determine the time elapsed between various historical events
otherwise recorded only in different chronologies, eras, or calendars. This is precisely the reason why the
system is used by astronomers, and today, in information technology, for significant date manipu lation.
Technically, a Julian period or date isone that stipulatesthe number of days from January 1,4713 before the
common era (bce) to the date of interest. Such a Julian date becomes confused with the Gregorian calendar
because we currently use that calendar and are typically interested in getting back to real dates. Confusion
arises, however, when we calculate a Gregorian date for any period before 1582 and then try to synchronize
such a date with dates recorded in documents prior to 1582. The reason, of course, is that until 1582 people in
the Western world, at least, used the old Julian calendar. The material concerning julian numbers is taken
from "Julian Period." Britannica CD. Version 97. Encyclopaedia Britannica, Inc., 1997.

EWCDATE.DLL Page 9 of 64

Overview of the Date Routines

There are several collections of date routines included. Two of those collections have close internal
dependencies. One is derived from L ewis Rosenfelder, Basic Faster and Better (Upland, CA: 1JG Inc., 1981),
pp. 109-10 and the other from Michael A. Covington, "A Calendar for the Ages," Pc Tech Journal, vol. 3, no.
12, Dec. 85, pp. 136ff. In general, these groups of routines have dependencies from one routine to another. If
you use any of these routines be aware that they might not be easily used with other, more generalized
functions or sub programs. A third group was presented in John P. Grillo and J. D. Robertson in two books,
Subroutine Sandwich (New York: John Wiley & Sons, 1983, p. 32, and More Subroutine Sandwich (New York:
John Wiley & Sons, 1983, p. 36. Grillo and R obertson site J. D. Robertson, "Remark on Algorithm 398",
Communications of the ACM, Vol. 15, No. 10, 1972, p. 918. The fourth group of routines were written by
Thomas Wm. Madron. Neither the Grillo/Robertson nor the Madron collections assume any dependencies on
other routines.

Fundamental to date calculations isthe ability to take one or more dates, convert the date(s) into a sequential
number based on some (often arbitrary) starting point, then be able to convert those sequential numbers back
to a date. Virtually all other date computations are based on the sequential number, often referred to as a

Julian Number. As was noted in the introduction, not all sequential data numbers are Julian Numbers, but
all serve essentially the same purpose. The Covington, Grillo, and R osenfe lder collections all have this
functional capability. The validity of the computational technique can be easily tested by simply calculating a
Julian Number from an arbitrary date, then reproducing the inputdate from the Julian Number. In Table 1
are the results for such a test, using ewcdate.dll, for a series of dates from 1699 to 2099, with random months
and days:

Table 1: Julian and Computational Date Validation

Input Source Julian# Result
5/31/1699 Grillo 2341758 0573171699
12/22/1799 Grillo 2378487 12/22/1799
10/30/1899 Grillo 2414958 10/30/1899
11/29/1999 Grillo 2451512 11/29/1999
8/30/2099 Grillo 2487946 0873072099
4/2/1699 Covington -102540 4/2/1699
8/4/1799 Covington -65892 8/4/1799
117371899 Covington -29277 117371899
10/26/1999 Covington 7239 10/26/1999
11/10/2099 Covington 43779 11/10/2099
271271699 Rosenfelder 620602 271271699
10/26/1799 Rosenfelder 657383 10/26/1799
6/4/1899 Rosenfelder 693764 6/4/1899
11/27/1999 Rosenfelder 730465 11/27/1999
4/4/2099 Rosenfelder 766753 4/4/2099

The first column is the input date, the second is the collection used for the computation, the third column is
the Julian, or Julian-like number calculated from the input date, and the fourth column is the date derived
from the Julian (or Julian-like) number. The input and output formats are in the form used in the United
States: month/day/year. The Grillo function, Julian, comes closest to the original Julian Number procedure
with a starting date of approximately Jan. 1, 4713 BC. While all these collections appear accurate, the
Rosenfelder collection should be used with caution because it does not use a completely generalized approach
for dealing with leap years.

EWCDATE.DLL Page 10 of 64

The Rosenfelder Collection

The following functions were based on Lewis Rosenfelder:
FUNCTION CompDate Computational Date (Julian-ike)
FUNCTION CompDayNumber Day of year
FUNCTION CompDayO fMonth Day of month

FUNCTION CompMonth Month

FUNCTION CompYear Year

FUNCTION CompDayName Day Name

FUNCTION JulianD ate Sequential day within a given year. Not a true Julian number.

Those routines starting with "Com p" require that a computational date be calculated with
FUNCTION CompDate.

Largely because Rosefelder did not bother to provide a generalized approach to dealing with leap years the
routines may not be reliable outside the range of 1901-2099, although, as may be seen in Table 1, they were
correct outside that range for the sample dates. They compensate for leap years within this period but not in a
wholly generalized manner. The Rosenfelder routines are highly dependenton what he called a

computational date, calculated with the function CompDate. CompDate produces a Julian-like number
that can be used in date calculations providing that the dates fall between 1901 and 2099 ce (in the common
era). The problem with the Rosenfelder calculations can arise with years that are divisible by 4, but are not
leap years.

Years divisible by 4 are leap years except for years divisible by 100 unle ss those years are also divisible by 400.
Thus, 2000 is a leap year, but 1900 and 2100 are not. The reason for this adjustment is that from at least 730
AD it was known that the solar year was somewhat short of 365.25 days, the assumed length of the year under
the Julian calendar. When Pope Gregory XII1I instituted calendar reform in 1582, as part of that reform, he
adopted the formula noted to keep the calendar closer to the actual solar year. Because the solar year is
shortening, astronomers today keep the Gregorian calendar in line by making a one second adjustment, as
needed, normally on December 31 at midnight, whenever the accumulation of errors nears one second. This
function takes all of thisinto consideration.

The Covington Collection

The purpose of the following routines is to calculate long-range dates for the more distant past and future.
The original routines were written in Pascal, then translated into Fortran, then into Turbo BASIC from the
Fortran and finally reworked into Powe rBasic.

FUNCTION DayNum Day number from 1 Jan 1980

SUB CalDat Date from (derived from DayNum)
FUNCTION WeekDay Day of week (derived from DayNum)
FUNCTION rgtALIGN$ Private utility

FUNCTION Dfrac Private utility

FUNCTION Dint Private utility

FUNCTION Floor Private utility

For this collection the computational date is provided by FUNCTION DayNum using 1 Jan 1980 as the base
for the system. Dates before 1 Jan 1980 will generate a negative DayNum, those after a positive Day Num.
SUB CalDat recalls the normal date from the number calculated by DayNum.

EWCDATE.DLL Page 11 of 64

The Grillo and Robertson Collection

In their books Subroutine Sandwich and More Subroutine Sandwich, Grillo and Robertson presented several
routines for date manipulation. Unlike the previous collections, all of these are independent of one another.
Through translation those included in EWCDATE .DLL deriving from Grillo and Robertson are:

FUNCTION julian Julian Number

SUB revjulian Returns month, day, and year from julian
SUB JulT oDate Returns date string from julian

FUNCTION zeller Day of week (0 - 6) using Zeller s Congruence
FUNCTION DayOfWeek Day of week (1 -7) using FUNCTION zeller
FUNCTION LeapYear Calculates leap year (0=no; 1=yes)

FUNCTION DayOfYearSequential day within a given year.

Although Grillo and Robertson provide a subroutine that returns a normal date from the Julian Number
calculated by FUN CTION julian, a separate procedure (Jul ToDate) by an unknown author is also used in this
DLL to return a date string (mm/dd/[-]yyyy).

The Madron Collection

In addition to the basic computational routines from the collections already described, anumber of additional
utility functions and procedures have been written over the years by Thomas Wm. Madron. Most, though not
all, use the computational subprograms in the other collections to do the actual date manipulations:

FUNCTION LongDayName Returns the full name of the day in week.
FUNCTION ShortDayName Returns a 3-character day in week abbreviation.
FUNCTION LongMonthName Returns the full name of the month.
FUNCTION ShortMonthName Returns a 3-character month abbreviation.

SUB CurrentDate Returnscurrent Month&, Day&, Year&.

FUNCTION Today Returns currentdate in standard English.

SUB ReportDate Returns any date in standard English.

FUNCTION FirstSunday Returns day of first Sunday for month and year.

FUNCTION DaysIinMonth Given Month& and Year&, returns number of days in Month&.
SUB GetTodaysD ate Returns elements of date as strings for display.

FUNCTION AnyDay Returns Day& within Month& and Year& of the Nth day of week

(i.e., 3" Tuesday, 4" Wednesday).
FUNCTION D aySavStrt Returns the day of year of the starting of daylight savings time (U.S.).
FUNCTION DaySavEndReturns the day of year of the ending of daylight savings time (U.S.).
FUNCTION DayLightSavings Determines whether a given date is in standard or daylight savings
time (O=standard; -1=daylight savings time).

FUNCTION StandardDate Returns a string containing a date in R FC 822 standard format.

FUNCTION MonthinYear Returns the month number for a given year and day number within
the year.

FUNCTION MonthFromName Returns the month number from its English name.

SUB ParseEnglsh Date Returns month, day, and year numbers from a date string expressed

in either U.S. or European formats in English.
A Note of Caution

When using these routines for date computations, do not mix the computational date functions of one
collection with the retrieval functions of another collection. You cannot, for example, calculate a

EWCDATE.DLL Page 12 of 64

computational date with FUNCTION CompDate (Rosefelder) and retrieve the Month, Day, and Year from
that number with FUNCTION revjulian (Grillo and Robertson). The three computational date functions in
this collection are:

FUNCTION CompDate Rosenfelder
FUNCTION DayNum Covington
FUNCTION julian Grillo and Robertson

Many people in Information Technology often confuse a frequently used measurement of time, the number of
days from January 1 of the current year to some date of interest (sequential day in year) with Julian
numbers. While such a measure can be used for some of the same purposes that Julian numbersare used,
these are clearly not Julian num bers.

EWCDATE.DLL Page 13 of 64

Using EWCDATE.DLL

Including EWCDATE.inc

To use these date functions and procedurescopy EWCDATE.DLL into c:\Wwindows\system or
c:\winnt\system32 (or wherever your windows directory resides). You should be able access these routines
from any language that can make use of standard 32-bit DLLs. For the PowerBasic Console Compiler,
include EWCDATE.INC at the top ofyour program:

$INCLUDE EWCDATE.inc
The include file contains all the declare statements necessary to use any routine in EWCDATE.DLL. Since

there may dependencies from one function or procedure to another, use the entire include file without trying
to edit it for only those functions and/or procedures you are using.

Calling the Functions and Procedures

When numeric date information is required by a routine, or returned by a routine, the values are normally
passed as long integers (i.e., Month&, Day&, Year&). The three values most frequently encountered are:

Month& = long integer containing a month number (1-12, 1=January).

Day& = long integer containing a day-of-month number (1-31).
Year& = long integer containing a year (yyyy).

EWCDATE.DLL Page 14 of 64

Julian and Julian-like Numbers

Date calculations must, in some way or another, start out with the calculation of a julian number or something
like a julian number. In this packages there are several such functions:

FUNCTION julian Grillo Calculate a true julian date.

FUNCTION DayOfYear Grillo Calculate the sequential day of the year.

FUNCTION DayNum Covington Number of days elapsed since 1980 jan 0 (1979 dec 31).

FUNCTION CompDate Rosenfelder Calculate a computational date for lateruse in related
subprograms.

FUNCTION JulianD ate Rosenfelder Calculate a sequential day number within a year.

FUNCTION CompDayNumber Rosenfelder Recall day number within year from computational date.

The primary similarity among all these functions is the ability to use the number calculated as the basis for
various date calculations. For example, if we wanted to find how many days will elapse between two dates
within a given year, we could use DayOfYear, JulianDate, or CompDayNumber to calculate the sequential day
number of each date, them simply subtract the two numbers. In information processing the sequential day
number within a year is often, but incorrectly called a julian date. In fact, Rosenfelder s JulianDate
number is so misnamed.

In this group of functions julian, DayNum, and CompDate all provide more generalized sequential numbers
allowing date computations across years.

EWCDATE.DLL Page 15 of 64

julian
Function

Purpose:

Author/Reference:

Syntax:

Parameters:

Remarks:

Example:

EWCDATE.DLL

To calculate a true julian date.

John P. Grillo and J. D. Robertson, More Subroutine Sandwich (New York: John
Wiley & Sons, 1983, p. 36. Grillo and Robertson site J. D. Robertson, "Remark on
Algorithm 398", Communications of The ACM, Vol.15,No. 10,1972, p. 918 (TWM,
4/3/88).

j# = julian (Month&, Day&, Year&)

DECLARE FUNCTION julian ALIAS "julian" (Month&, Day&, Year&) export AS
DOUBLE

Parameters are returned by CurrentDate.

Month& = long integer containing a month number (1-12, 1=January).
Day& = long integer containing a day-of-month number (1-31).

Year& = long integer continaing a year (yyyy).

Page 16 of 64

DayNum

Function
Purpose: Number of days elapsed since 1980 jan 0 (1979 dec 31) given year as full four digit
number.
Author/Reference: Michael A. Covington, "A Calendar for the Ages," PC Tech Journal, vol. 3, no. 12,
Dec. 85, pp. 136ff.
Syntax: dn& = DayNum (Month&, Day&, Year&)
DECLARE FUNCTION DayNum ALIAS"DayNum" (Month&, Day&, Year&)
export AS LONG
Parameters: Month& = long integer containing a month number (1-12, 1=January).
Day& = long integer containing a day-of-month number (1-31).
Year& = long integer continaing a year (yyyy).
Remarks: Requires the following functions local to date.dll:
FUNCTION Floor
FUNCTION Dint
The use of these functions is transparent to the programmer.
Dates prior to January 1, 1980, will be returned as negative numbers.
Example:

EWCDATE.DLL Page 17 of 64

DayOfYear

Function
Purpose: To calculate the sequential day of the year taking into account Leap Y ears.
Author/Reference: John P. Grillo, and J. D. Robertson, Subroutine Sandwich (New York: John Wiley &
Sons, 1983, p. 36.
Syntax: d& = DayOfYear (Month&, Day& Year&)
DECLARE FUNCTION DayOfYear ALIAS"DayOfYear" (Month&, Day&,
Year&) export AS LONG
Parameters: Month& = long integer containing a month number (1-12, 1=January).
Day& = long integer containing a day-of-month number (1-31).
Year& = long integer continaing a year (yyyy).
Remarks: Requires FUNCTION LeapYear (Year&)
Example:

EWCDATE.DLL Page 18 of 64

CompDate

Function

Purpose:
Author/Reference:
Syntax:
Parameters:

Remarks:

Example:

EWCDATE.DLL

To calculate a computational date for lateruse in related subprograms based on
Rosenfelder.

Based on functions taken from Lewis Rose nfelder, Basic Faster and Better (Upland,
CA: 1JG Inc., 1981), pp. 109-10.

x& = CompDate (month&, day&, year&)

DECLARE FUNCTION CompDate ALIAS "CompDate" (month&, day&, year&)
export as long

Month& = long integer containing a month number (1-12, 1=January).
Day& = long integer containing a day-of-month number (1-31).
Year& = long integer continaing a year (yyyy).

This function producesa long integer number functionally (but not computationally)

similar to a julian number. Valid for dates from 1901 through 2099. Takes leap
years into account.

Page 19 of 64

JulianDate

Function

Purpose:
Author/Reference:
Syntax:

Parameters:

Remarks:

Example:

EWCDATE.DLL

To calculate a sequential day number within a year (hence, not a true julian
number).

Based on functions taken from Lewis Rose nfelder, Basic Faster and Better (Upland,
CA: 1JG Inc., 1981), pp. 109-10.

x& = JulianDate (month&, day&, year&)

DECLARE FUNCTION JulianDate ALIAS"JulianDate" (month&, day&, year&)
export as long

Month& = long integer containing a month number (1-12, 1=January).
Day& = long integer containing a day-of-month number (1-31).

Year& = long integer continaing a year (yyyy).

Notwithstanding the name, this function calculates only the day number within a
given year (from 1901 through 2099), not a true julian number.

Page 20 of 64

CompDayNumber

Function

Purpose: Recall day number within year from computational date.

Author/Reference: Based on functions taken from Lewis Rosenfelder, Basic Faster and Better (Upland,
CA: 1JG Inc., 1981), pp. 109-10.

Syntax: X& = CompDayNumber (d&)
DECLARE FUNCTION CompDayNumber ALIAS "CompDayNumber" (d&)

export as long

Parameters: d& = CompDate (month&, day&, year&)

Remarks: Requires the use of FUNCTION CompDate. Is equivalentto FUNCTION
JulianDate but retrieves the day number from the computational date.

Example:

EWCDATE.DLL Page 21 of 64

Retrieving a Date from a Julian Number

One of the things we might wish to do, given a Julian number, is to retrieve a readable, common date from the
julian number. There are three routines for accomplishing this, depending on what"julian" routine was used
to obtain the julian number:

FUNCTION CompYear Retrieves a year from a computational date.

FUNCTION CompMonth Retrieves a month number from year and day number.

FUNCTION CompDayO fMonth Retrieves a monthly day number from month, year, and day
number.

SUB JulT oDate Retrieves date from a Julian number calculated with FUNCTION
julian.

SUB CalDat Retrieves date from number calculated with FUNCTION DayNum

Usage notes for CompYear, JulToDate and CalDat follow:

EWCDATE.DLL Page 22 of 64

CompYear

Function

Purpose: To retrieve a year from a computational date (see Comp Date, above).

Author/Reference: Based on functions taken from Lewis Rosenfelder, Basic Faster and Better (Upland,
CA: 1JG Inc., 1981), pp. 109-10.

Syntax: Xx& = CompYear(d&)
DECLARE FUNCTION CompYear ALIAS "CompY ear" (d&) exportas long

Parameters: d& = CompDate (month&, day&, year&)

Remarks: Requires the use of FUNCTION CompDate. Retrieves the year from the
computational date.

Example:

EWCDATE.DLL Page 23 of 64

CompMonth

Function

Purpose: To retrieve a month number from a computational day number (see
CompDayNumber, above) and year (see CompYear, above).

Author/Reference: Based on functions taken from Lewis Rose nfelder, Basic Faster and Better (Upland,
CA: 1JG Inc., 1981), pp. 109-10.

Syntax: x& = CompMonth(cmpdaynum&, year&)
DECLARE FUNCTION CompMonth ALIAS"CompMonth" (cmpdaynumé&,

year&) export as long

Parameters: m& = CompMonth (cmpdaynum&, year&)

Remarks: Requires the use of FUNCTION CompD ayNumber and possibly CompYear.

Example:

EWCDATE.DLL Page 24 of 64

CompDayOfMonth

Function

Purpose: Recall day of month from year, month, and day within year.

Author/R eference: Lewis Rosenfelder, BASIC FASTER AND BETTER (Upland, CA: 1JG Inc., 1981),
pp. 109-10.

Syntax: d& = CompDayOfMonth (year&, month&, cmpdaynum&)
Cmpdaynum& is calculated using CompDate, another of Rosenfelder routines.
DECLARE FUNCTION CompDayOfMonth ALIAS "CompDayOfMonth" (year&,
month&, cmpdaynum&) export as long

Parameters: year& - four digit long integer containing the year of interest.
month& - long integer containing the month number of interest.
cmpdaynumé& - long integer containing Rosenfelder s computational date.

Requires: FUNCTION CompDate

Remarks:

Example:

EWCDATE.DLL Page 25 of 64

JulToDate

Procedure
Purpose: To convert the Julian number of a date into it's date form ("mm-dd-[-]yyyy")
Author/R eference: Unknown.
Syntax: call JulToDate (JulianNumber#, ResultDate$)
DECLARE SUB JulToDate ALIAS "JulToDate" (JulianNumber#, ResultDate$)
EXPORT
Parameters: JulianNumber# = Double precision real number containing a Julian number.
Calculated with FUNCTION julian.
ResultDate$ = String containing the date referenced by JulianNumber#.
Remarks: Requires the following functions:
FUNCTION Julian
FUNCTION rgtAlign$
If the year is negative, it is bce (before the common era).
Example:

EWCDATE.DLL Page 26 of 64

CalDat

Procedure
Purpose: Inverse of daynum: given date finds year, month, day.
Author/Reference: SOURCE: Michael A. Covington, "A Calendar for the Ages,” PC Tech Journal, vol.
3, no. 12, Dec. 85, pp. 136ff.
Syntax: call CalDat (DayNum1&, Month&, Day&, Year&)
DECLARE SUB CalDat ALIAS "CalDat" (DayNum1&,Month&, Day&, Year&)
EXPORT
Parameters: DayNuml1& = long integer containing the sequential day number
calculated with FUNCTION DayNum.
Month& = Returned as long integer containing a month number (1-12, 1=January).
Day& = Returned as long integer containing a day-of-month num ber (1-31).
Year& = Returned as long integer continaing a year (yyyy).
Remarks: Requires FUNCTION Dint.
Example:

EWCDATE.DLL Page 27 of 64

Other Date Counting Utility Functions

When manipulating dates itis often necessary to know the sequential day number of a particular date, the
number of days in a given month/year, and whether or nota given yearis a leap year. Four functions provide
this information:

FUNCTION zeller
FUNCTION DayOfWeek
function Days InMonth
FUNCTION LeapYear

Zeller implements a well-know n algorithm called zeller scongruence. The result of the application of this
algorithm to a given date is a day number in the range of 0 - 6 where 0 = Sunday. DayOfWeek provides the
same information, also using zeller s congruence, but provides the day number in the range 1 - 7 where 1 =
Sunday. The number of days in a given month/year, is found by DaysInM onth, which compensates for leap
years. LeapYear determines whether a given year is a leap year.

Detailed application notes follow:

EWCDATE.DLL Page 28 of 64

zeller

Function

Purpose: To determine the day of the week for any date. Sometimes called Zeller's
Congruence.

Author/Reference: John P. Grillo, and J. D. Robertson, Subroutine Sandwich (New York: John Wiley &
Sons, 1983, p. 32.

Syntax: x& = zeller (month&, day&, year&) , where
0 = Sunday . .. 6 = Saturday
DECLARE function zeller ALIAS "zeller" (month&, day&, year&) export as long

Remarks:

Example:

EWCDATE.DLL Page 29 of 64

DayOfWeek

Function

Purpose:

Author/Reference:

Syntax:

Parameters:

Remarks:

Example:

EWCDATE.DLL

To determine the day of the week for any date.
Modified version of zeller (see zeller).

dw& = DayOfWeek (Month&, Day& Year&)
1 = Sunday ... 7 = Saturday

DECLARE FUNCTION DayOfWeek ALIAS "DayOfWeek" (month&, Day&,
Year&) export AS LONG

Month& = long integer containing a month number (1-12, 1=January).
Day& = long integer containing a day-of-month number (1-31).
Year& = long integer continaing a year (yyyy).

see zeller (Month&, Day&, Year&) for further documentation. These are identical

in function although D ayOfW eek returns days as 1-7 while zeller returns days as 0-6.
Both start counting with Sunday.

Page 30 of 64

DaysIinMonth

Function

Purpose: To return the number of days in month& for year&. T his function accurately
compensates for leap years.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: nd& = DaysInMonth (month&, year&)
DECLARE function DaysInMonth ALIAS "DaysinMonth" (month&, year&)
export as long

Parameters: Month & = long integer containing a month number (1-12, 1=January).
Year& = long integer continaing a year (yyyy).

Requires: FUNCTION LeapYear

Remarks:

Example:

EWCDATE.DLL Page 31 of 64

LeapYear

Function
Purpose:

Author/R eference:

Syntax:

Parameters:

Remarks:

Example:

EWCDATE.DLL

To determine if Year& is a Leap Year

John P. Grillo, and J. D. Robertson, Subroutine Sandwich (New York: John Wiley &
Sons, 1983, p. 40.

I& = LeapYear (year&)

DECLARE FUNCTION LEAPYEAR ALIAS"LeapYear" (year&) EXPORT AS
LONG

Year& = long integer continaing a year (yyyy).

Years divisible by 4 are leap years except for years divisible by 100 unless those years
are also divisible by 400. Thus, 2000 is a leap year, but 1900 and 2100 are not. The
reason for this adjustment is that from at least 730 AD it was known that the solar
year was somewhat short of 365.25 days, the assumed length of the year under the
Julian calendar. When Pope Gregory Xl instituted calendar reform in 1582, as
part of that reform, he adopted the formula noted to keep the calendar closer to the
actual solar year. Because the solar year is shortening, astronomers today keep the
Gregorian calendar in line by making a one second adjustment, as needed, normally
on December 31 at mid night, whe never the accumu lation of errors nears one second.
This function takes all of this into consideration.

Page 32 of 64

Labeling Days and Months

Given dates of some kind, it is frequently necessary provide labels (specifically, day names and month names)
for display. In this DLL there are five functions that provide labeling capabilities:

FUNCTION LongDayName
FUNCTION ShortDayName
FUNCTION LongMonthName
FUNCTION ShortMonthName
FUNCTION CompDayName

The first four are quite generalized. The long and short day name functions provide either a full day name
(i.e., "Monday") or an abbreviated 3-character day name (i.e., "Mon"). The only parameter required for these
functions is a day number where 1=Sunday and 7=Saturday. Similarly, the long and short month name
functions provde full or abbreviated month names. The single parameter required is a month number where
1=January.

The Com pDayN ame function is one of Rosenfelder's and requires not a day name but the computational date
calculated with FUNC TION CompDate. It is, therefore, less generalized than the other labeling functions.

Usage notes forthe labeling functions follow:

EWCDATE.DLL Page 33 of 64

LongDayName

Function

Purpose: To return a full day name for day-of-week.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: d$ = LongDayName (day&)
DECLARE FUNCTION LongDayName ALIAS "LongDayName" (day&)
EXPORT ASSTRING

Parameters: day& = long integer containing a day-of-week number (1-7, 1=Sunday).

Remarks:

Example:

EWCDATE.DLL Page 34 of 64

ShortDayName

Function

Purpose: To return a short day-of-week name.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: d$ = ShortDayName (day&)
DECL ARE FUNCTION ShortDayName ALIAS "ShortDayName" (day&) export
as string

Parameters: day& = long integer containing a day-of-week number (1-7, 1=Sunday).

Remarks:

Example:

EWCDATE.DLL Page 35 of 64

LongMonthName

Function

Purpose: To return a full month name.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: m$ = LongMonthName (month&)
DECLARE FUNCTION LongMonthName ALIAS"LongMonthName" (month&)
export as string

Parameters: month& = long integer containing a month number (1-12, 1=January).

Remarks:

Example:

EWCDATE.DLL Page 36 of 64

ShortMonthName

Function

Purpose: To return a short month name.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: m$ = ShortMonthName (month&)
DECLARE FUNCTION ShortMonthName ALIAS "ShortMonthName" (month&)
export as string

Parameters: month& = long integer containing a month number (1-12, 1=January).

Remarks:

Example:

EWCDATE.DLL Page 37 of 64

Specialized Utility Routines

It is sometimes necessary to find out very specific things about dates or to display them in some particular
fashion. There are several routines that do just that:

SUB CurrentDate

SUB GetTodaysD ate
FUNCTION Today
FUNCTION StandardDate
FUNCTION FirstSunday
FUNCTION AnyDay

CurrentD ate converts the current date (acquired from the computer system) to month, day, and year
expressed as long integers. When dates are actually displayed, it is often useful to have the relevant numbers
converted to names or other strings. This is accomplished with GetTodaysDate for the current date. Today
reports the current date in standard E nglsih. In a similar fashion, StandardD ate provides the current date in
RFC 822 format. FirstSunday and AnyDay provide the dates for the first Sunday ina given month/ear and
the date for any nth day (third Thursday, for example) in a month.

Detail application notes follow:

EWCDATE.DLL Page 38 of 64

CurrentDate

Procedure

Purpose: To return the currentdate as m&, d&, and y&.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: call CurrentDate (M&, d&, y&) or CurrentDate m&, d&, y&
DECLARE SUB CurrentDate ALIAS "CurrentDate" (m&, d&,y&) EXPORT

Parameters: Parameters are returned by CurrentDate.
m& = long integer containing a month number (1-12, 1=January).
d& = long integer containing a day-of-month number (1-31).
y& = long integer continaing a year (yyyy).

Remarks:

Example:

EWCDATE.DLL Page 39 of 64

GetTodaysDate

Procedure
Purpose:
Author/R eference:

Syntax:

Parameters:

Requires:

Remarks:

Example:

EWCDATE.DLL

To report elements of the currentuseful for display.
Thomas Wm. Madron (1998)

call GetTodaysDate (WkDay$,Dm$,Mnth$,Year$) or
GetTodaysD ate WkD ay$, Dm$, Mnth$, Year$

DECLARE SUB GetTodaysDate ALIAS "GetTodaysDate"

(WkDay$,Dm$,Mnth$, Year$) EXPORT

Parameters are returned by sub GetTodaysDate.
WkDay$ - Weekday name.

Dm$ - Month number with suffix (i.e., 10th).
Mnth$ - Month name.

Year$ - Four digit year.

FUNCTION zeller
FUNCTION LongDayName
FUNCTION CompDate
FUNCTION CompDayO fMonth
FUNCTION LongMonthName
FUNCTION CompDayNumber

Page 40 of 64

Today

Function
Purpose: To report the current date in standard English.
Author/R eference: Thomas Wm. Madron (1998)
Syntax: t$ = Today
DECLARE FUNCTION Today LIB "EWCDATE.DLL" ALIAS "Today" () AS
STRING
Parameters: None.
Requires: FUNCTION GetT odaysD ate
Remarks: Returns a string formatted as follows:
Today is Sunday, June 27th, 1999
Example:

EWCDATE.DLL Page 41 of 64

StandardDate

Function
Purpose: Function to determine an RFC 822 standard date header line and related functions
and subprograms. RFC 822 requires the following date/time format
Date: 26 Aug 76 1429 EDT (day, month, year, time, timezone).
Author/R eference: Thomas Wm. Madron (1998)
Syntax: d$ = StandardDate
DECLARE function StandardDate ALIAS "StandardDate" () exportas string
Parameters: None.
Requires: FUNCTION CurrentDate
FUNCTION ShortMonthName
FUNCTION FirstSunday
Remarks:
Example:

EWCDATE.DLL Page 42 of 64

FirstSunday

Function

Purpose: To determine the date of the first Sunday of any given month/year.

Author/R eference: Thomas Wm. Madron (1998)

Syntax: f& = FirstSunday (month&, year&)
DECLARE FUNCTION FirstSunday ALIAS "FirstSunday" (month&, year&)
exportAS LONG

Parameters: Month& = long integer containing a month number (1-12, 1=January).
Year& = long integer continaing a year (yyyy).

Requires: FUNCTION zeller

Remarks: On input, Month and Year must contain the month and year of interest. Day will be
returned as the date of the first sunday of the month and year of interest. The first
Sunday will, of course, occur sometime within the firstseven days of the MONTH.

Example:

EWCDATE.DLL Page 43 of 64

AnyDay
Function

Purpose:

Author/R eference:

Syntax:

Parameters:

Requires:

Remarks:

Example:

EWCDATE.DLL

To determine the date for any N th day in a given month/year.
Thomas Wm. Madron (1998)
f& = AnyDay (month&, year&, seq&, wkdy&)

DECLARE FUNCTION AnyDay ALIAS "AnyDay" (month&, year&, seq&,
wkdy&) export AS LONG

Month& = long integer containing a month number (1-12, 1=January).

Year& = long integer containing a year (yyyy).

seq& = long integer containing the sequence number of the date sought (i.e., [3]rd
Tuesday, [2]nd Wed nesday, etc.).

wkdy& = long integer containing the day-of-week number for the day of interest
(1-7, 1=Sunday).

FUNCTION zeller
FUNCTION DaysIinMonth

On input, Month and Year must contain the month and year of interest. Day will be
returned as the date of the Nth day of the month and year of interest. If the function
returns zero (0), then the Nth day was non-existant (i.e., the 5th Monday when there
was no 5th Monday).

Page 44 of 64

WeekDay

Function

Purpose: GIVEN DAY NUM, FINDS DAY OF WEEK (1=SUN; 2=MON; ETC.)

Author/Reference: Michael A. Covington, "A Calendar for the Ages,"PC TECH JOU RNAL, vol. 3, no.
12, Dec. 85, pp. 136ff.

Syntax: wd& = WeekDay (DN&)
DECLARE FUNCTION WeekDay LIB "EWCD ATE.DLL" ALIAS "WeekDay"
(DN&) AS LONG

Parameters: DN& = longintegercontainingday numberfrom DayNum.

Requires: Nothing

Remarks:

Example:

EWCDATE.DLL Page 45 of 64

CompDayName

Function

Purpose: Day of the week function.

Author/Reference: Lewis Rosenfelder, BASIC FASTER AND BETTER (U pland, CA: 1JG Inc., 1981),
pp. 109-10.

Syntax: d$ = CompDayName(cmpdt&)
DECLARE FUNCTION CompDayName ALIAS"CompDayName" (cmpdt&)
export as string

Parameters: cmpdt& - Computational date calculated with CompDate.

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 46 of 64

MonthFromName

Function

Purpose: To produce a month number from the month's English name.

Author/Reference: Thomas Wm. Madron (1999)

Syntax: d& = MonthFromName(Month$)
DECLARE FUNCTION MonthFromName ALIAS "MonthFromName" (Month$)
EXPORT ASLONG

Parameters: Month$ - M onth name (i.e., "January” or "JAN" or "Jan")

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 47 of 64

ParseEnglishDate

Procedure

Purpose:

Author/Reference:

Syntax:

Parameters:

Requires:

Remarks:

Example:

EWCDATE.DLL

To parse a date as commonly expressed in English in either U.S. or European
formats.

Thomas Wm. Madron (1999)

CALL ParseEnglishDate (datestr$, month&, day&, year&, Ecode&)
Or
ParseEnglishDate datestr$, month&, day&, year&, Ecode&

DECLARE SUB ParseEnglishDate ALIAS "ParseEnglishDate" (datestr$, m&, d&,
y&, Ecode&) EXPORT

datestr$ - Date string (i.e., October 4, 1937, or 4 October 1937)
m& - returned month number.

d& - returned day (in month) number.

y& - returned year.

Ecode& - Number of elements in datestr$ (must = 3 or is invalid).

StrTok - local to this dll.
MonthFromName& - See documentation.

Parses a date stringin either US or European format US = MonthName
DayNumber, Year (4 digits); or European = DayNumber MonthName Year (4
digits). If datestr$ is properly parsed, then Ecode& = 2, else this is not a properly
fromatted date string. Ecode& is actually returned as the number of elements in
datestr$. If the procedure failes, Ecode& <= 3 (the required number of elements),
and m&, d&, and y& are returned as zero (0), otherwise, m&, d&, and y& are
returned as the appropriate numbers. Ecode& is set to zero if the parse fails. If
either m& or d& evaluate to zero, then Ecode& is returned as zero.

Page 48 of 64

Daylight Savings

Daylight saving time is the time during which clocks are set one hour or more ahead of standard time to
provide more daylight atthe end of the working day during late spring, summer, and early fall. Daylight saving
time, also called SUMMER TIME, is a system for uniformly advancing clocks, especially in summer, so as to
extend daylight hours during conventional waking time. Inthe Northern Hemisphere, clocks are usually set
ahead one hour in late March or in April and are set back one hour in late September or in October.

The practice was first suggested in a whimsical essay by Benjamin Franklin in 1784. In 1907 an Englishman,
William Willett, campaigned for setting the clock ahead by 80 minutes in four moves of 20 minutes each during
the spring and summer months. In 1908 the House of Commons rejected a bill to advance the clock by one
hour in the spring and return to Greenwich Mean (standard) Time in the autumn.

Several countries, including Australia, Great Britain, Germany, and the United States, adopted summer
daylightsaving time during World War | to conserve fuel by reducing the need for artificial light. During
World War 11, clocks were kept continuously advanced by an hour in some nations--e.g., in the United States
from Feb. 9, 1942, to Sept. 30, 1945; and England used "double summer time" during part of the year,
advancing clocks two hours from the standard time during the summer and one hour during the winter
months.

In the United States, daylight saving time formerly began on the last Sunday in April and ended on the last
Sunday in October. In 1986 the U.S. Congress passed a law moving up the start of daylightsaving time to the
firstSunday in April, while keeping its end date the same. In most of the countries of western Europe, daylight
saving time startson the last Sunday in March and endson the last Sunday in September. In Britain and many
other countries worldwide, it lasts from March 30to October 26. The material concerning the history and
practice of daylight saving time is taken from "D aylight saving time." Britannica CD. Version 97. E ncyclopaedia
Britannica, Inc., 1997.

When dealing with dates itis sometimes useful to know whether a given date is part of daylight savings. The
general problem with using daylight savings times is that the specific startand stop dates for daylight savings
are set legislatively by each nation. The functions dealingwith daylight saving time are based on the current
(June 27, 1999) U.S. standard. The functions involved are:

FUNCTION D aySavStrt

FUNCTION DaySavEnd
FUNCT ION DayLightSavings

EWCDATE.DLL Page 49 of 64

DaySav Strt

Function

Purpose: To calculate the day of the year that Daylight Savings starts (in the US, the 1st
Sunday of April, 2:00 a.m.).

Author/Reference: Thomas Wm. Madron (1998)

Syntax: ds$ = DaySavStrt(year&)
DECLARE FUNCTION DaySavStrt ALIAS "DaySavStrt" (year&) export AS
LONG

Parameters: year& = long integer containing a four digit year of interst.

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 50 of 64

DaySavEnd

Function

Purpose: To calculate the day of the year that Daylight Savings ends (in the US, the last
Sunday of October, 2:00 a.m.).

Author/Reference: Thomas Wm. Madron (1998)

Syntax: de$ = DaySavEnd(year&)
DECLARE FUNCTION DaySavEnd ALIAS "DaySavEnd" (year&) export AS
LONG

Parameters: year& = long integer containing a four digit year of interst.

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 51 of 64

DayLightSavings

Procedure
Purpose: To determine weather a given date falls within the U.S. daylight saving period.
Author/Reference: Thomas Wm. Madron (1998)
Syntax: ds$ = DayLightSavings(month& day&,year&)
DECLARE FUNCTION DayLightSavings ALIAS "D aylightSaveings"
(month&,day&,year&) EXPORT ASLONG
Parameters: month& - long integer containing the month of interest.
day& - long integer containing the day of interest (within month&).
year& = long integer containing a four digit year of interest.
Requires: FUNCTION D aySavStrt
FUNCTION DaySavEnd
Remarks: Return value: True (-1) if date in daylight savings, else False (0).
Example:

EWCDATE.DLL Page 52 of 64

Local Utility Functions

The following utility functions are used, at this point, only to support other routines and are not accessible
from external programs. They are private to this DLL and cannot be accessed by other programs.

Support forthe Covington collection:
FUNCTION rgtALIGN$
FUNCTION DFrac
FUNCTION Dint
FUNCTION Floor

Support for the Madron collection:

SUB StrTok

EWCDATE.DLL Page 53 of 64

rtALIGN

Function
Purpose: To right align textin a given length of screen space.
Author/Reference: Michael A. Covington, "A Calendar for the Ages,"PC TECH JOU RNAL, vol. 3, no.
12, Dec. 85, pp. 136ff.
Syntax: text$ = rgtALIGN (text$, length&)
DECLARE FUNCTION rgtALIGN$ ALIAS"rgtALIGN" (text$, length&)
Parameters: text$ - any arbitrary text.
length& - length of the field into which text isbeing right aligned.
Requires: Nothing.
Remarks:
Example:

EWCDATE.DLL Page 54 of 64

DFrac

Function

Purpose: To return the fractional part of a Real number.

Author/Reference: Michael A. Covington, "A Calendar for the Ages,"PC TECH JOU RNAL, vol. 3, no.
12, Dec. 85, pp. 136ff.

Syntax: Y# = Dfrac(X#)
DECLARE FUNCTION DFrac ALIAS "DFrac" (X#) AS DOUBLE

Parameters: X# = a double precision real number from which the fractional partis to be
extracted.

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 55 of 64

Dint

Function

Purpose: To truncate to Double Precision.

Author/Reference: Michael A. Covington, "A Calendar for the Ages,"PC TECH JOU RNAL, vol. 3, no.
12, Dec. 85, pp. 136ff.

Syntax: Y# = Dint(X#)
DECLARE FUNCTION Dint ALIAS "Dint" (x#) AS DOUBLE

Parameters: X# = a double precision real number

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 56 of 64

Floor

Function

Purpose: Find the largest whole number not greater than X# (a real number).

Author/Reference: Michael A. Covington, "A Calendar for the Ages,"PC TECH JOU RNAL, vol. 3, no.
12, Dec. 85, pp. 136ff.

Syntax: Y# = Floor(X#)
DECLARE FUNCTION Floor ALIAS "Floor' (X#) AS DOUBLE

Parameters: X# = double precision real number.

Requires: Nothing.

Remarks:

Example:

EWCDATE.DLL Page 57 of 64

StrTok

Procedure
Purpose:
Author/Reference:

Syntax:

Parameters:

Requires:

Remarks:

Example:

EWCDATE.DLL

To parse a list of tokens and return them in Param s$(i).
Thomas Wm. Madron (1998)

StrTok Params$(), CountParams&, Delimiter$, Tokens$
Or,
CALL StrTok (Params$(), CountParams&, Delimiter$, Tokens$)

DECLARE SUB StrTok ALIAS "StrTok" (Params$(), CountParams&, Delimiter$,
Tokens$, Ecode&)

Params$() - a string array Dimensioned to the largest number of tokens that might
be encountered.

CountParams& - long integer returned as the number oftokens found.
Delimiter$ - the character(s) separating each token.

Tokens$ - a string containing the tokens to be parsed.

Ecode& - error code: 0=0K; -1=No Delimiter

Nothing.

Similar in purpose to the C function StrTok, this procedure differs only in the fact
that all tokens are returned at once in an array rather than one ata time. The
number of tokens is returned in CountParams&. On input, a single Delimiter$ must
be specified or an error code (-1) will be returned; and one or more Tokens must be
contained in Token$, separated by Delimiter$. Spaces can also be used
independently of Delimiter$ to make the input more readable.

Page 58 of 64

Sample Program
TSTDT.BAS

A small and simple sample program that exercises all the functions and sub programs described above is the following:
—————————— Cut Here -----——---
$INCLUDE "ewcdate.inc"

DECLARE FUNCTION padright$ (text$, padchar$, fieldlen%)
DECLARE FUNCTION edtnum$ (né&)

FUNCTION pbmain () AS LONG

CLS

stdout padright$("Function/Procedure™,”™ " ,29)+"Result”

stdout padright$(’”,”=",28)+" "+padright$(" ", =",35)

CALL CurrentDate (m&, d&, y&):

stdout padright$("CurrentDate",” ",29)+edtnum$(m&)+" "+edtnum$(d&)+" "+edtnum$(y&)

stdout padright$('Long]ShortDayName"," ',29)+"Today is '"+LongDayName(DayOfWeek(m&,d&,y&))+" or
"+ShortDayName (DayOfWeek(mé&,d&,y&))

stdout padright$("”Long]ShortMonthName","™ ",29)+"This month is "+LongMonthName (m&)+" or
"+ShortMonthName (m&)

if DayLightSavings (m&, d&, y&) then
stdout padright$('DayLightSavings"," ",29)+"Time period is daylight savings."

else
stdout padright$('DayLightSavings"," ",29)+"Time period is standard.”

end if

CALL GetTodaysDate (WkDay$,Dm$,Mnth$,Year$)

stdout padright$("GetTodaysDate","™ ",29)+WkDay$+" "+Dm$+" "+Mnth$+" "+Year$

stdout padright$("Today"," ",29)+Today

stdout padright$("Julian™,”™ ",29)+edtnum$(ulian (m&, d&, y&))

CALL JulToDate (Julian(m&,d&,y&), ResultDate$)

stdout padright$(*"JulToDate",”™ ",29)+ResultDate$

stdout padright$("DayOfYear™,"™ ",29)+edtnum$(DayOfYear (m&, d&, y&))

stdout padright$("'DayOfWeek™,"™ ",29)+edtnum$(DayOfWeek (m&, d&, y&))

stdout padright$('StandardDate™,” ™,29)+StandardDate

stdout padright$(“Zeller”,” ",29)+edtnum$(zeller (m&,d&,y&))

EWCDATE.DLL Page 59 of 64

stdout padright$("FirstSunday™," ",29)+edtnum$(FirstSunday (m&,y&))
stdout padright$("DaysinMonth™,” *,29)+edtnum$(DaysinMonth (m&, y&))
tmp& = LeapYear(y&)

select case tmp&

case O

ans$ = "No"
case -1

ans$ = "Yes"

end select
stdout padright$(“LeapYear"™," ",29)+"("+edtnum$(tmp&)+") "+ans$
dn& = DayNum (m&, d&, y&)
stdout padright$("'DayNum™,” ",29)+edtnum$(dn&)
call CALDAT (dn&, Month&, Day&, Year&)
stdout padright$(CalDate™,” ",29)+edtnum$(Month&)+" "+edtnum$(Day&)+" "+edtnum$(Yeard)
stdout padright$(“WeekDay"," ",29)+edtnum$(WeekDay (dn&))
stdout padright$(*JulianDate"”,” ",29)+edtnum$(JulianDate (m&, d&, y&))
cmpdt& = CompDate (m&, d&, y&)
stdout padright$(“CompDate"”," ",29)+edtnum$(cmpdt&)
stdout padright$(“”CompYear"™," ",29)+edtnum$(CompYear (cmpdt&))
stdout padright$(”CompDayNumber™,"™ ",29)+edtnum$(CompDayNumber (cmpdt&))
stdout padright$(”CompDayName™," " ,29)+CompDayName (cmpdt&)
stdout padright$(CompDayOfMonth™,™ ™ ,29)+edtnum$(CompDayOfMonth (y&, m&, CompDayNumber (cmpdté&)))
stdout padright$(""AnyDay™,” ",29)+edtnum$(AnyDay (m&, y&, 3, 3))+" (third tuesday)”
stdout padright$("MonthFromName"™," ",29)+edtnum$(MonthFromName(LongMonthName(m&)))
datestr$ = LongMonthName(m&)+" "+edtnum$(d&)+", "+edtnum$(y&)
ParseEnglishDate datestr$, monthé&, dayé&, year&, Ecode&
stdout padright$(“'ParseEnglishDate™,” ",29)+"("+datestr$+") = "+edtnum$(month&)+" "+edtnum$(day&)+"
"+edtnum$(yearé&)
stdout padright$("","=",64)
stdout "This test program executes all functions and subprograms in"
stdout "ewcdate.dll. The resultsof this program can be redirected”
stdout "to a file for more liesurely inspection: tstdt > filename.txt."
stdout "The output may also be paged using more, or if you have it,"
stdout "less: tstdt | more, or tstdt | less."
stdout padright$("","=",64)
END FUNCTION

FUNCTION padright$ (text$, padchar$, fieldlen%)
LOCAL 1%

EWCDATE.DLL Page 60 of 64

i% = LEN(text$)
SELECT CASE i%
CASE > fTieldlen%
padright$ =
CASE = fieldlen%
padright$ =
CASE < fieldlen%
padright$ =
CASE ELSE
EXIT SELECT
END SELECT
END FUNCTION

FUNCTION edtnum$ (n&)

LEFT$(text$, fieldlen%®)
text$

rtrim$(text$) + STRING$(Fieldlen%-LEN(text$),padchar$)

- Present an integer number as a string without leading spaces.
This could, of course, be replaced with the PBDLL function trim$.

edtnum$ = ITtrim$(rtrim$(str$(n&)))

END FUNCTION

EWCDATE.DLL

Page 61 of 64

Validity Testing

test.bas

This program is part of the distribution and verifies the adequacy of those functions and procedures using Julian-like numbers .

Test the accuracy of date to julian to date functions

$INCLUDE "j:\compiler\inc\ewcdate.inc"

FUNCTION PBMAIN () AS LONG
CLS
RANDOMIZE
StartYear& = 1699
EndYear& = 2099
STDOUT "Julian and Computational Date Validation"

STDOUT ***
PRINT "lInput","Source","Julian#","Result"
PRINT "=========="" ""'z===z======"" "'=z==zo=z======"" ""'z==o======="'
FOR Year& = StartYear& TO EndYear& STEP 100
" Grillo:

month& = RND(1,12)
ndays& = DayslInMonth (monthé&, yearé&)
Day& = RND(1l, ndays&)
TestDate$ = TRIMS(STR$(Month&))+"/"+TRIMS(STR$(Day&))+"/"+TRIM$(STR$(Yearé&))
grillo# = julian (Month&, Day&, Year&)
CALL JulToDate (grillo#, ResultDate$)
PRINT TestDate$, “Grillo™, STR$(grillo#), ResultDate$
NEXT yearé&
STDOUT ™™

FOR year& = StartYear& TO EndYear& STEP 100
Covington
month& = RND(1,12)
ndays& = DayslInMonth (monthé&, year&)
Day& = RND(1l, ndays&)
TestDate$ = TRIMS(STR$(Month&))+"/"+TRIMS(STR$(Day&))+"/"+TRIM$(STRS(Year&))
covington& = DayNum (Month&, Day&, Year&)
CALL CalDat (covington&, m&, d&, y&)

EWCDATE.DLL Page 62 of 64

PRINT TestDate$, "Covington'", STR$(covington&), _
TRIM$(STRE(M&))+"/"+TRIMS(STRS(d&)) +"/"+TRIMS(STRS(y&))
NEXT year&

sTbouT "™
FOR year& = StartYear& TO EndYear& STEP 100
" Rosenfelder
month& = RND(1,12)
ndays& = DayslInMonth (monthé&, year&)
Day& = RND(1l, ndays&)
TestDate$ = TRIMS(STR$S(Month&))+"/"+TRIMS(STR$(Day&))+"/"+TRIMS(STRS(Year&))
rosenfelder& = CompDate (month&, day&, year&)
y& = CompYear(rosenfelderé&)
m& = CompMonth (rosenfelder&, y&)
cmpdaynum& = CompDayNumber (rosenfelder&)
d& = CompDayOfMonth (y&, m&, cmpdaynumé&)
PRINT TestDate$, "Rosenfelder™, STR$(rosenfelder&), _
TRIM$(STRE(M&))+"/"+TRIMS(STRS(d&))+"/"+TRIMS(STR$(y&))
NEXT yearé&

END FUNCTION

EWCDATE.DLL Page 63 of 64

Bibliography
Michael A. Covington, "A Calendar for the Ages," PC TECH JOURNAL, vol. 3, no. 12, Dec. 85, pp. 136ff.
John P. Grillo, and J. D. Robertson, SUBROUTINE SANDWICH (New York: John Wiley & Sons, 1983).

John P. Grillo and J. D. Robertson, MORE SUBROUTINE SANDWICH (New York: John Wiley & Sons,
1983).

Jean Meeus, ASTRONOMICAL FORMULAE FOR CALCULATORS, 2nd Edition (Richmond, V A:
Willmann-Bell, 1982).

J. D. Robertson, "Remark on Algorithm 398," COMMUNICATIONS OF THE ACM, Vol. 15, No. 10, 1972, p.
918.

Lewis Rosenfelder, BASIC FASTER AND BETTER (Upland, CA: 1JG Inc., 1981).
"Julian Period." Britannica CD. Version 97. Encyclopaedia Britannica, Inc., 1997.

"Daylight saving time." Britannica CD. Version 97. Encyclopaedia Britannica, Inc., 1997.

EWCDATE.DLL Page 64 of 64

