
Date Manipulation Routines
Copyright (c) 1998-99 by Enterprise-Wide Computing, Inc.

by Thomas Wm. Madron
Email: info@ewc-inc.com

Table of Contents

LICENSE AGREEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
STATEMENT OF COPYRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
GENERAL CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
RIGHTS OF USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
RIGHTS OF DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DISCLAIMER OF WARRANTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
TECHNICAL SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Package Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Issues in Date Manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Overview of the Date Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
The Rosenfelder Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The Covington Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The Grillo and Robertson Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
The Madron Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A Note of Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Using EWCDATE.DLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Including EWCDATE.inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Calling the Functions and Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Julian and Julian-like Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
julian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DayNum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DayOfYear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CompDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
JulianDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CompDayNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Retrieving a Date from a Julian Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CompYear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
CompMonth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CompDayOfMonth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
JulToDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
CalDat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Other Date Counting Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
zeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DayOfWeek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DaysInMonth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LeapYear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Labeling Days and Months . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
LongDayName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ShortDayName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
LongMonthName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
ShortMonthName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Specialized Utility Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CurrentDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
GetTodaysDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
StandardDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FirstSunday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
AnyDay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
WeekDay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CompDayName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
MonthFromName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ParseEnglishDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Daylight Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DaySavStrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DaySavEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
DayLightSavings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Local Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
rtALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DFrac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
DInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
StrTok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Validity Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



EWCDATE.DLL Page 4 of 64

LICENSE AGREEMENT

This license agreement covers your use of the En terprise-Wide Comp uting, Inc. EWCD ATE.D LL, its source

code, docum entation, and ex ecutable files, hereina fter referred to as "the  Product".

The P roduc t is Cop yright (c ) 1998-9 9 by E nterpr ise-W ide Co mpu ting, Inc . You  may u se it and  distribu te it

according to this following License Agreement. If you do not agree with these terms, please remove the

Product from your system. By incorporating the Product in your work or distributing the Product to others you

implicitly agree to these license terms.

This License Agreement covers the current version of The Product. Enterprise-Wide Computing, Inc. reserves

the righ t to mo dify the  terms  of this L icense  Agre emen t at any  mom ent, an d witho ut prior  notificat ion, in

future releases o f The Produ ct.

STATEMENT OF COPYRIGHT

The Product is, and remains, copyright 1998-98 by Enterprise-W ide Computing, Inc.

GENERAL CONDITIONS

The Product consists of a ready-to-use DLL (EWCD ATE.DLL), the source code in BASIC that can be

compiled by P owerBa sic PBDL L5 and later, a n include file containing all ap propriate D ECLA RE state ments

for use with the PowerBasic 32-bit compilers, PBDLL5 and later, and PB/CC 1 and later, and the

documentation for the package (E WCD ATE.PB F).

You may freely use and distribute the Product DLL with any program that uses components of the DLL.  The

source code is provided to assist the user in modifying or expanding the compon ents of the DLL.  The sou rce

code, as distributed, remains copyrighted by Enterprise-Wide Computing, Inc. except as other copyrights may

apply.

RIGHTS OF USAGE

You may freely and at no additional cost use the Product in any project, commercial, academic, military, or

private, so long as you respect the License Agreem ent. The License Agreem ent does not affect any software

except the Product. In particular, any application that uses the Product does not itself fall under the License

Agreement.  EWCDATE .DLL may be freely distributed with any product or project using components of

EWCDA TE.DLL.

You may m odify any part of the Product, including sources and documentation, except this License

Agreement, which you may not modify.

You must clearly indicate any modifications at the start of each source file. The user of any modified Product

code mus t know that the s ource file is not original.

At your discre tion, you may re write or reuse a ny part of the Pro duct so that your  derived code is no t obviously

part of the Product. This derived code does not fall under the Product License Agreement directly, but you

must include a credit at the start of each source file indicating the original authorship and source of the code,

and a statement of copyright as follows:

    "Parts cop yright (c) 19 98-99 by E nterprise -Wide  Com puting, Inc."



EWCDATE.DLL Page 5 of 64

RIGHTS OF DISTRIBUTION

You may not redistribute the original Product in any form, either free or for a fee, without purchasing

additional licenses ex cept EW CDA TE.DL L in association with a ny program  or product using th e compon ents

of the DLL.

At no time will Enterprise-Wide Computing, Inc. associate itself with any distribution of the Product except

that supplied from Enterprise-Wide C omputing, Inc.

DISCLAIMER OF WARRANTY

The Prod uct is provided as a c omme rcial product in the ho pe that it will be useful. It is pro vided "as-is",

without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties

of merchan tability and fitness for a par ticular purpose. T he entire risk as to de termining the suitability, qua lity

and performance of the Prod uct is with you. Should the Product prove defective, the full cost of repair,

servicing, or correction lies with you.

TECHNICAL SUPPORT

Limited technical support can be had from support@ewc-net.com.

Published by Enterprise-W ide Computing, Inc.

URL: http://ewcnet.com; Email: info@ewc-inc.com

June 27, 1999



EWCDATE.DLL Page 6 of 64

Package Contents

This package of date routines consists of the following files:

EWCDA TE.DLL 32-bit W indow s DL L cont aining a ll routin es des cribed  in this

documen t.

EWCDATE.BAS Source code for EWCDATE.DLL.

EWCDATE.INC Include file for PowerBasic Console C ompiler (pbcc).

EWCDATE.PDF Documentation in PDF file format.  Requires AcroRead 2.1 or

later.

TSTDT.BAS Test p rogra m exe rcising a ll functio ns and  proce dures  in this

package.

TEST.BAS Validity testing program for routines that calculate a Julian Number

or its functional equivalen t.

README.TXT Installation instructions.



EWCDATE.DLL Page 7 of 64

Installation

After unzipping th e distribution archive into a tem porary directory , copy/move E WC DAT E.DLL  to

C:\windows\system (for Win95/98) or C:\winnt\system32 (for Win NT), or wherever you have put your

Windows system directory.  Copy/move the other files to any convenient location.  This package does not make

use of any other libraries, although you might note that there are additional date functions available through

the Windows A PI.

To use the subroutines in this package with the PowerBasic PBCC (Console Compiler) or PBDLL simply add

the following include statement at the top of your program(s):

$INCLUDE  � EWCDATE.INC �

The  � EWCD ATE.INC �  file must be where it can be found by the compiler or accessed with a fully qualified

file specification on the include sta tement.  EW CDA TE.INC  contains correct de clare stateme nts for all

routines in EWCDATE.DLL.



EWCDATE.DLL Page 8 of 64

Introduction

This file doc umen ts a 32-bit w indows d ll that conta ins a total o f 37 date m anipulatio n and su pport ro utines. 

The techniques and algorithms used in the implementation of these routines can be found in the bibliography

at the end of this file. We have been collecting these routines since the early 1980s and all have passed through

a number of versions of Basic, now implemented for compilation by PowerBasic's DLL compiler, v. 6.  Some of

the routines even  started life in other langu ages, usually Fo rtran, but som etimes in Pasca l.

There is some overlapping, in terms of functionality, of some of the routines.  This has arisen as a byproduct of

the sources of various of the routines, plus the fact that there are several ways to deal with the same or similar

issues.



EWCDATE.DLL Page 9 of 64

Issues in Date Manipulations

The most common problem in manipulating dates is to find the length of time, measured in days, between two

dates.  Various disciplines need to know the elapsed time between historical events,  measured in some

standar d fashion .  This is a com mon p roblem  in astrono my, inform ation techn ology, an d some times in histo ry. 

The general solution to this issue is to calculate the dates in question as a sequential number of days from

some starting point, do whatever addition or subtraction is necessary, then convert the resulting sequential

number back to a common format of month, day, and year.  These sequential numbers are often, but

incorrectly , termed   � Julian C alenda r �  dates.  O nly one s pecific meth od for calc ulating da tes in term s of a

sequence of days is properly called a  � Julian �  period or date.

The Julian period, a chronological system now used  chiefly by astronomers and based on  the consecutive

numbering of days from Jan. 1, 4713 BC. Not to be confused with the Julian calendar, the Julian period was

proposed by the scholar Joseph Justus Sca liger in 1583 and named by him for his father, Julius Cesar Scaliger.

Joseph Scaliger proposed a period of 7,980 years of numbered days to be used in determining time elapsed

between various historical events otherwise recorded only in different chronologies, eras, or calendars. The

length of 7,980 years was chosen as the product of 28 times 19 times 15; these respectively, are the numbers of

years in the so-called solar cycle of the Julian calendar in which dates recur on the same days of the week; the

lunar or Metonic cycle, after which the phases of the Moon recur on a particular day in the solar year, or year

of the s eason s; and  the cyc le of ind iction, or iginally a  sched ule of p eriodic  taxes o r gove rnme nt req uisitions  in

ancient Rome.  The epoch, or starting point, of 4713 BC was chosen as the nearest past year in which the three

cycles began together.

The Julian period or date is  often confused with the Julian Calendar,  also called OLD STYLE CALENDAR,

a dating system established by Julius Caesar as a reform of the Roman republican calendar. Caesar, advised by

the Alexandrian astronomer Sosigees, made the new calendar solar, not lunar, and he took the length of the

solar year as 365 1/4 days.  The Gregorian calendar, also called NEW STYLE  CALEND AR, is the solar

dating system now in general use. It was proclaimed in 1582 by Pope Gregory XIII as a reform of the Julian

calendar.  By the Julian reckoning, the solar year comprised 365 1/4 days; the intercalation of a "leap day"

every four years was intended to maintain correspondence between the calendar and the seasons. A slight

inaccuracy in the measurement (the solar year comprising more precisely 365 days, 5 hours, 48 minutes, 46

seconds) caused the calendar dates of the seasons to regress almost one day per century.

Joseph Scaliger p roposed his sys tem in order to  determine the  time elapsed  between va rious historical events

otherwise recorded only in different chronologies, eras, or calendars.  This is precisely the reason why the

system  is used by  astrono mers, a nd toda y, in inform ation techn ology, for s ignificant date  manipu lation. 

Technically, a Julian period or date is one that stipulates the number of days from January 1, 4713 before the

common era (bce) to the date of interest.  Such a Julian date becomes confused with the Gregorian calendar

because we currently use that calendar and are typically interested in getting back to real dates.  Confusion

arises, however, when we calculate a G regorian date for any period before 1582 and then try to synchron ize

such a  date w ith date s recor ded in  docum ents pr ior to 15 82.  Th e reas on, of co urse, is  that un til 1582 p eople  in

the Western world, at least, used the old Julian calendar.  The material concerning julian numbers is taken

from "Julian Pe riod." Britannica CD. Version  97. Ency clopaed ia Britann ica, Inc., 1997 . 



EWCDATE.DLL Page 10 of 64

Overview of the Date Routines

There are several collections of date routines included.  Two of those collections have close internal

depend encies.  O ne is derive d from L ewis R osenfeld er, Basic Faster and Better (Upland, CA :  IJG Inc., 1981),

pp. 109-10 and th e other from M ichael A. Co vington, "A Ca lendar for the A ges," Pc Tech Journal, vol. 3, no.

12, Dec. 85, pp. 136ff.  In general, these groups of routines have dependencies from on e routine to another.  If

you use any of these routines be aware that they might not be easily used with other, more generalized

functions or sub programs.  A third group w as presented in John P. Grillo and J. D. R obertson in two books,

Subroutine Sandwich (New York:  John Wiley & Sons, 1983, p. 32, and More Subroutine Sandwich (New York:

John W iley & Sons, 198 3, p. 36.  Grillo and R obertson site J. D . Robertson , "Remar k on Algor ithm 398",

Communications of the ACM, Vol. 15, No. 10, 1972, p. 918.  The fourth group of routines were written by

Thomas Wm. Madron.  Neither the Grillo/Robertson nor the Madron collections assume any dependencies on

other routines.

Fundamental to date calculations is the ability to take one or more dates, convert the date(s) into a sequential

number based o n some (often arbitrary) starting point, then be able to convert those sequential numbers ba ck

to a date.  Virtually all other date computations are based on the se quential number, often referred to as a

 � Julian Number. �   As was noted in the introduction, not all sequential data numbers are Julian Numbers, but

all serv e esse ntially th e sam e purp ose.  T he Co vington , Grillo , and R osenfe lder co llection s all ha ve this

functional capability.  The validity of the computational technique can be easily tested by simply calculating a

Julian Number from an arbitrary date, then reproducing the input date from the Julian Number.  In Table 1

are the results for such a test, using ewcdate.dll, for a series of dates from 1699 to 2099, with random months

and days:

Table 1:  Julian and Computational Date Validation

Input         Source        Julian#       Result
==========    ==========    ==========    ==========
5/31/1699     Grillo         2341758      05/31/1699
12/22/1799    Grillo         2378487      12/22/1799
10/30/1899    Grillo         2414958      10/30/1899
11/29/1999    Grillo         2451512      11/29/1999
8/30/2099     Grillo         2487946      08/30/2099

4/2/1699      Covington     -102540       4/2/1699
8/4/1799      Covington     -65892        8/4/1799
11/3/1899     Covington     -29277        11/3/1899
10/26/1999    Covington      7239         10/26/1999
11/10/2099    Covington      43779        11/10/2099

2/12/1699     Rosenfelder    620602       2/12/1699
10/26/1799    Rosenfelder    657383       10/26/1799
6/4/1899      Rosenfelder    693764       6/4/1899
11/27/1999    Rosenfelder    730465       11/27/1999
4/4/2099      Rosenfelder    766753       4/4/2099
==========    ==========    ==========    ==========

The fir st colum n is the in put da te, the s econd  is the co llection  used f or the c omp utation , the thir d colu mn is

the Julian, or Julian-like number calculated from the input date, and the fourth column is the date derived

from the Julian (or Julian-like) number.  The input and output formats are in the form used in the United

States: m onth/day /year.  The  Grillo fun ction, Julian, comes closest to the original Julian Number procedure

with a starting date of approximately Jan. 1, 4713 BC.   While all these collections appear accurate, the

Rosenfelder collection should be used w ith caution because it does not use a completely generalized approach

for dealing with leap years.



EWCDATE.DLL Page 11 of 64

The Rosenfelder Collection

The following functions were based on Le wis Rosenfelder:

'      

FUN CTIO N Com pDate Computational Date (Julian-like)

FUNCTION  CompDayNumber Day of year

FUN CTIO N Com pDayO fMonth Day of m onth

FUN CTIO N Com pMonth Month

FUNCTION  CompYear Year

FUNCTION CompDayName Day Name

FUN CTIO N JulianD ate Sequential day within a given year.  Not a true Julian numbe r.

Those routine s starting with "Com p" require that a co mputational d ate be calculated  with

FUNCTION  CompDate.

Largely because Rosefelder did not bother to provide a generalized approach to dealing with leap years the

routines may not be reliable outside the range of 1901-2099, although, as may b e seen in Table 1, they were

correct outside that range for the sample dates.  They compensate for leap years within this period but not in a

wholly generalized manner.  The Rosenfelder routines are highly dependent on what he called a

 � computational date, �  calculated with the function  � CompDate. �   CompDate produces a  � Julian-like �  number

that can be used in date calculations providing that the dates fall between 1901 and 2099 ce (in the common

era).  The problem with the Rosenfelder calculations can arise with years that are divisible by 4, but are not

leap years.

Years  divisible by 4  are leap  years ex cept for ye ars divisible b y 100 unle ss those y ears are  also divisible  by 400. 

Thus, 2000 is a leap year, but 1900 and 2100 are not.  The reason for this adjustment is that from at least 730

AD it was known that the solar year was somewhat short of 365.25 days, the assumed length of the year under

the Julian calendar.  When Pope Gregory XIII instituted calendar reform in 1582, as part of that reform, he

adop ted the  formu la note d to ke ep the  calend ar clos er to th e actua l solar  year.  B ecaus e the so lar yea r is

shortening, astronomers today keep the Gregorian calendar in line by making a one second adjustment, as

need ed, no rmall y on D ecem ber 31  at mid night, w henev er the a ccum ulation  of erro rs nea rs one  secon d.  This

function takes all of this into consideration.

The Covington Collection

The pu rpose o f the follow ing routine s is to calcula te long-ra nge date s for the m ore distan t past and  future. 

The original routines were written in Pascal, then translated into Fortran, then into Turbo BASIC from the

Fortran and finally reworked into Powe rBasic.

FUNCTION  DayNum Day number from 1 Jan 1980

SUB CalDat Date from (derived from DayNum)

FUNCTION  WeekDay Day of week (derived from DayNum)

FUNCTION rgtALIGN$ Private utility

FUNCTION  Dfrac Private utility

FUN CTIO N Dint       Private utility

FUNC TION F loor      Private utility

For this collection the  � computational date �  is provided by FUNC TION D ayNum using 1 Jan 1980 a s the base

for the sys tem.  D ates befo re 1 Jan 1 980 will gen erate a n egative D ayNu m, those  after a po sitive Day Num . 

SUB CalDat recalls the  � normal �  date from the number calculated by DayNum.



EWCDATE.DLL Page 12 of 64

The Grillo and Robertson Collection

In their books Subroutine Sandwich and More Subroutine Sandwich, Grillo and Robertson presented several

routines fo r date m anipulatio n.  Unlike  the previo us collectio ns, all of the se are ind epende nt of one a nother. 

Through translation those included in EWCDATE .DLL deriving from Grillo and Robertson are:

FUNCTION  julian Julian Number

SUB revjulian Returns month, day, and year from julian

SUB JulT oDate Returns date string from julian

FUNC TION zeller Day of week (0 - 6) using Zeller � s Congruence

FUNCTION  DayOfWeek Day of week (1 - 7) using FUNCTION zeller

FUNCTION  LeapYear Calculates leap year (0=no ; 1=yes)

FUNCTION  DayOfYearSequential day within a given year.

Although Grillo and Robertson provide a subroutine that returns a  � normal �  date from the Julian Number

calcula ted by  FUN CTI ON  julian, a  separ ate pr ocedu re (Jul ToD ate) b y an un know n auth or is als o used  in this

DLL to return a da te string (mm/dd/[-]yyyy).

The Madron Collection

In addition to the basic computational routines from the collections already described, a number of additional

utility functions and procedures have been written over the years by Thomas Wm. Madron.  Most, though not

all, use the computational subprograms in the other collections to do the actual date m anipulations:

FUNCTION LongDayName Returns the full name of the day in week.

FUNCTION ShortDayName Returns a 3-character day in week abbreviation.

FUNCTION LongMonthName Returns the full name of the month.

FUNCTION ShortMonthName Returns a 3-character month abbreviation.

SUB C urrentDa te Returns current Month&, Day&, Year&.

FUNCTION  Today Returns current date in standard English.

SUB R eportDa te Returns any date in standard English.

FUNCTION  FirstSunday Returns day of first Sunday for month an d year.

FUN CTIO N Da ysInMon th Given Month& and Year&, returns number of days in Month&.

SUB G etTodaysD ate Returns elements of date as strings for display.

FUNCTION  AnyDay Returns Day& within Month& and Year& of the Nth day of week

(i.e., 3rd Tuesd ay, 4 th Wednesda y).

FUNC TION D aySavStrt Returns the day of year of the starting of daylight savings time (U.S.).

FUNCTION  DaySavEndReturns the day of year of the ending of daylight savings time (U.S.).

FUNCT ION DayLightSavings Determines whether a given date is in standard or daylight savings

time (0=standard; -1=d aylight savings time).

FUN CTIO N Standa rdDate Returns a  string containing a date in R FC 822 stan dard forma t.

FUNCTION  MonthInYear Retu rns the  mont h num ber for  a given  year a nd da y num ber w ithin

the year.

FUNCTION MonthFromName Returns the month number from its English name.

SUB P arseEnglsh Date Returns month, day, and year numbers from a date string expressed

in either U.S. or European formats in English.

A Note of Caution

When using these routines for date computations, do not mix the computational date functions of one

collection with the retrieval functions of another collection.  You cannot, for example, calculate a



EWCDATE.DLL Page 13 of 64

computational date with FUNCTION  CompDate (Rosefelder) and retrieve the Month, Day, and Year from

that nu mbe r with F UN CTI ON  revjulia n (Gr illo and  Rob ertson ).  The  three c omp utation al date  function s in

this collection are:

FUN CTIO N Com pDate Rosenfelder

FUNCTION  DayNum Covington

FUNCTION  julian Grillo and Robertson

Many people in Information Technology often confuse a frequently used measurement of time, the number of

days from January 1 of the current year to some date of interest (sequential day in year) with  � Julian �

numbers.  While such a measure can be used for some of the same purposes that Julian numbers are used,

these are   clearly no t Julian num bers. 



EWCDATE.DLL Page 14 of 64

Using EWCDATE.DLL

Including EWCDATE.inc

To use these date functions and procedures copy EWCDAT E.DLL into c:\windows\system or

c:\winnt\system32 (or wherever your windows directory resides).  You should be able access these routines

from any language that can m ake use of standard 32-bit DLL s.  For the PowerBasic Con sole Compiler,

include EWCDATE.INC at the top of your program:

$INCLU DE  � EWC DATE .inc �

The include file contains all the declare statements necessary to use any routine in EW CDA TE.DLL .  Since

there may dependencies from one function or procedure to another, use the entire include file without trying

to edit it for on ly those fu nctions an d/or proc edures  you are  using.  

Calling the Functions and Procedures

When  numeric date  information is requ ired by a routine, or  returned by a  routine, the values a re normally

passed as long integers (i.e., Month&, Day&, Year&).  The three values most frequently encountered are:

Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer containing a year (yyyy).



EWCDATE.DLL Page 15 of 64

Julian and Julian-like Numbers

Date calculations must, in some way or another, start out with the calculation of a julian number or something

like a julian number.  In this packages there are several such functions:

FUNCTION  julian Grillo Calculate a true julian date.

FUNCTION  DayOfYear Grillo Calculate the sequential day of the year.

FUNCTION  DayNum Covington Number of da ys elapsed since 1980 jan 0 (1979 dec 31).

FUN CTIO N Com pDate Rosenfelder Calculate a  � computational date �  for later use in related

subprograms.

FUN CTIO N JulianD ate Rosenfelder Calculate a sequential day num ber within a year.

FUNCTION  CompDayNumber Rosenfelder Recall day number within year from computational date.

The primary similarity among all these functions is the ability to use the number calculated as the basis for

various date calculations.  For example, if we wanted to find how many days will elapse between two dates

within a given year, we could use DayOfYear, JulianDate, or CompDayNumber to calculate the sequential day

number of each date, them simply subtract the two numbers.  In information processing the sequential day

number within a year is often, but incorrectly called a  � julian �  date.  In fact, Rosenfelder �s  � JulianDate �

number is so misnamed.

In this group of functions julian, DayNum, and C ompDate all provide m ore generalized sequential numbers

allowing date computations across years.



EWCDATE.DLL Page 16 of 64

julian

Function

Purpose:  To calculate a true julian date.

Author/Reference: John P. G rillo and J. D . Robe rtson, More Subroutine Sandwich (New York: John

Wiley & Sons, 1983, p. 36.  Grillo and Robertson site J. D. Robertson, "Remark on

Algorith m 398", Communications of The ACM ,  Vol . 15, No. 10, 1972, p. 918.   (TWM,

4/3/88).

Syntax: j# = julian (Month&, Day&, Year&)

DECLARE FUNCTION julian ALIAS "julian" (Month&, Day&, Year&) export AS

DOUBLE

Parameters: Parameters are returned by CurrentDate.

Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer continaing a year (yyyy).

Remarks:

Example:



EWCDATE.DLL Page 17 of 64

DayNum

Function

Purpose: Num ber of d ays ela psed s ince 198 0 jan 0 ( 1979 d ec 31) g iven ye ar as fu ll four d igit

number.

Author/Reference: Michael A . Covington, "A  Calenda r for the Ages ," PC Tech Journal, vol. 3, no. 12,

Dec. 85 , pp. 136ff.

Syntax: dn& = DayNum (Month&, Day&, Year&)

DECLARE FUNCTION DayNum ALIAS "DayNum" (Month&, Day&, Year&)

export AS LONG

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer continaing a year (yyyy).

Remarks: Requires th e following functions loc al to date.dll:

FUNCTION  Floor

FUNCTION  Dint

The use of these functions is transparent to the programm er.

Dates prior to January 1, 1980, will be returned as negative num bers.

Example:



EWCDATE.DLL Page 18 of 64

DayOfYear

Function

Purpose: To calculate the sequential day of the year taking into account Leap Y ears.

Author/Reference: John P. G rillo, and J. D . Robe rtson, Subroutine Sandwich (New York:  John Wiley &

Sons, 1983, p. 36.

Syntax: d& = DayOfYear (Month&, Day& Year&)

DECLARE FUNCTION DayOfYear ALIAS "DayOfYear" (Month&, Day&,

Year&) export AS LONG

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer continaing a year (yyyy).

Remarks: Requires FUNCTION LeapYear (Year&)

Example:



EWCDATE.DLL Page 19 of 64

CompDate

Function

Purpose: To calculate a  � computational date �  for later use in related subprograms based on

Rosenfelder.

Author/Reference: Based  on function s taken fro m Lew is Rose nfelder, Basic Faster and Better (Upland,

CA:  IJG Inc., 1981), pp. 109-10.

Syntax: x& = CompDate (month&, day&, year&)

DECLARE FUNCTION CompDate ALIAS "CompDate" (month&, day&, year&)

export as long

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer continaing a year (yyyy).

Remarks: This function produces a long integer number functionally (but not computationally)

similar to a julian number.  Valid for dates from 1901 through 2099.  Takes leap

years into accoun t.

Example:



EWCDATE.DLL Page 20 of 64

JulianDate

Function

Purpose: To calculate a sequential day number within a year (hence, not a true  � julian �

number).

Author/Reference: Based  on function s taken fro m Lew is Rose nfelder, Basic Faster and Better (Upland,

CA:  IJG Inc., 1981), pp. 109-10.

Syntax: x& = JulianDate (month&, day&, year&)

DECLARE FUNCTION JulianDate ALIAS "JulianDate" (month&, day&, year&)

export as long

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer continaing a year (yyyy).

Remarks: Notwithstanding the name, this function calculates only the day number within a

given year (from 1901 through 2099), not a true julian number.

Example:



EWCDATE.DLL Page 21 of 64

CompDayNumber

Function

Purpose: Recall day number within year from computational date.

Author/Reference: Based  on function s taken fro m Lew is Rose nfelder, Basic Faster and Better (Upland,

CA:  IJG Inc., 1981), pp. 109-10.

Syntax: x& = CompDayNumber (d&)

DECLARE FUNCTION CompDayNumber ALIAS "CompDayNumber" (d&)

export as long

Parameters: d& = CompDate (month&, day&, year&)

Remarks: Requ ires the us e of FUN CTIO N Com pDate .  Is equivalent to FUNCTION

JulianDate  but retrieves the day number from the computational date.

Example:



EWCDATE.DLL Page 22 of 64

Retrieving a Date from a Julian Number

One of the things we might wish to do, given a Julian number, is to retrieve a readable, common date from the

julian number.  There are three routines for accomplishing this, depending on what "julian" routine was used

to obtain the julian number:

FUNC TION C ompYear Retrieves a year from a  � computational �  date.

FUN CTIO N Com pMonth Retrieves a month num ber from year and day n umber.

FUN CTIO N Com pDayO fMonth Retrieves a monthly day number from month, year, and day

number.

SUB JulT oDate Retrieves date from a Julian number calculated with FUNCTION

julian.

SUB CalDat Retrieves date from number calculated with FUNCTION  DayNum

Usage notes for CompYear, JulToDate and CalDat follow:



EWCDATE.DLL Page 23 of 64

CompYear

Function

Purpose: To retrieve a year from a  � computational �  date (see Comp Date, above).

Author/Reference: Based  on function s taken fro m Lew is Rose nfelder, Basic Faster and Better (Upland,

CA:  IJG Inc., 1981), pp. 109-10.

Syntax: x& = CompYear(d&)

DECLAR E FUNCTIO N CompYear ALIAS "CompY ear" (d&) export as long

Parameters: d& = CompDate (month&, day&, year&)

Remarks: Requ ires the us e of FUN CTIO N Com pDate .   Retrieves the year from the

computational date.

Example:



EWCDATE.DLL Page 24 of 64

CompMonth

Function

Purpose: To retrieve a month number from a  � computational �  day number (see

CompD ayNumbe r, above) and year (see Co mpYear, above).

Author/Reference: Based  on function s taken fro m Lew is Rose nfelder, Basic Faster and Better (Upland,

CA:  IJG Inc., 1981), pp. 109-10.

Syntax: x& = CompMonth(cmpdaynum&, year&)

DECLARE FUNCTION CompMonth ALIAS "CompMonth" (cmpdaynum&,

year&) export as long

Parameters: m& = CompMonth (cmpdaynum&, year&)

Remarks: Requ ires the us e of FUNCTIO N CompD ayNumber  and possibly CompYear .  

Example:



EWCDATE.DLL Page 25 of 64

CompDayOfMonth

Function

Purpose:  Recall day of month from  year, month, and day within year.

Author/R eference: Lewis R osenfeld er, BASIC FASTER AND BETTER (Upland, CA :  IJG Inc., 1981),

pp. 109-10.

Syntax: d& = CompDayOfMonth (year&, month&, cmpdaynum&)

Cmpdaynu m& is calculated using Com pDate, another of Rose nfelder routines.

DECLARE FUNCTION CompDayOfMonth ALIAS "CompDayOfMonth" (year&,

month&, cmpdaynum&) export as long

Parameters: year& - four  digit long integer containing the  year of interest.

month&  - long integer containing the  month num ber of interest.

cmpda ynum&  - long intege r containing  Rosen felder �s  � compu tational da te. �

Requires: FUN CTIO N Com pDate

Remarks:

Example:



EWCDATE.DLL Page 26 of 64

JulToDate

Procedure

Purpose: To convert the Ju lian number  of a date into it's date form  ("mm-dd -[-]yyyy")

Author/R eference: Unknown.

Syntax: call JulToDate (JulianNumber#, ResultDate$)

DECLA RE SUB JulToD ate ALIAS "JulToDate" (JulianNumber#, ResultDate$)

EXPORT

Parameters: JulianNumber#  = Doub le precision real number containing a Julian number.

Calculated with FUNCTION julian.

ResultDate$ = String containing the date referenced by JulianNumber#.

Remarks: Requires the following functions:

FUNCTION  Julian

FUNCTION  rgtAlign$

If the year is negative, it is bce (before the common era).

Example:



EWCDATE.DLL Page 27 of 64

CalDat

Procedure

Purpose: Inverse of daynum: given date finds year, month, day.

Author/Reference: SOUR CE:  M ichael A. Co vington, "A Ca lendar for the A ges," PC Tech Journal, vol.

3, no. 12, D ec. 85, pp. 1 36ff.

Syntax: call  CalDat (DayNum1&, Month&, Day&, Year&)

DECLARE SUB CalDat ALIAS "CalDat" (DayNum1&, Month&, Day&, Year&)

EXPORT

Parameters: DayNum1& = long integer containing the sequential day number

calculated with FUNCTION DayNum.

Month& =  Returned as long integer containing a month nu mber (1-12, 1=January).

Day& =  Returned as long integer containing a day-of-month num ber (1-31).

Year& =  Returned as long integer continaing a year (yyyy).

Remarks: Requires F UNC TION  Dint.

Example:



EWCDATE.DLL Page 28 of 64

Other Date Counting Utility Functions

When manipulating dates it is often necessary to know the sequential day number of a particular date, the

number of days in a given month/year, and whether or not a given year is a leap year.  Four functions provide

this information:

FUNCTION  zeller

FUNCTION  DayOfWeek

function Days InMonth

FUNCTION  LeapYear

Zeller imple ment s a we ll-know n algo rithm c alled  �zeller � s cong ruenc e. �   The re sult of th e app lication o f this

algorithm  to a given d ate is a da y numb er in the ra nge of 0 - 6 w here 0 =  Sunday .  DayOfWeek  provides the

same information, also using zeller �s congruence, but provides the day number in the range 1 - 7 where 1 =

Sunday.  The number of days in a given month/year, is found by DaysInM onth , which compensates for leap

years.  LeapYear determines whether a given year is a leap year.

Detailed application notes follow:



EWCDATE.DLL Page 29 of 64

zeller

Function

Purpose: To d eterm ine th e day  of the  wee k for a ny da te.  So meti mes  calle d Ze ller's

Congruence.

Author/Reference: John P. G rillo, and J. D . Robe rtson, Subroutine Sandwich (New York:  John Wiley &

Sons, 1983, p. 32.

Syntax: x& = zeller (m onth&, day&, yea r&) , where

0 = Sunday . . . 6 = Saturday

DECLAR E function zeller ALIAS "zeller" (month&, day&, year&) export as long

Remarks:

Example:



EWCDATE.DLL Page 30 of 64

DayOfWeek

Function

Purpose: To determine the day of the week for any date.

Author/Reference: Mod ified version  of zeller (see zeller).

Syntax: dw& = DayOfWeek (Month&, Day& Year&)

1 = Sunday . . . 7 = Saturday

DECLARE FUNCTION DayOfWeek ALIAS "DayOfWeek" (month&, Day&,

Year&) export AS LONG

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Day& =  long integer containing a day-of-month number (1-31).

Year& =  long integer continaing a year (yyyy).

Remarks: see zeller (Month&, Day&, Year&) for further documentation.  These are identical

in function a lthough D ayOfW eek retu rns days  as 1-7 wh ile zeller re turns da ys as 0-6. 

Both start counting with Sunday.

Example:



EWCDATE.DLL Page 31 of 64

DaysInMonth

Function

Purpose: To return the n umber of d ays in month&  for year&.  T his function accurately

compensates for leap years.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: nd& = DaysInMonth (month&, year&)

DECLARE  function DaysInMonth ALIAS "DaysInMonth" (month&, year&)

export as long

Parameters: Month & =  long intege r containing  a mon th num ber (1-12, 1 =Janu ary).  

Year& =  long integer continaing a year (yyyy).

Requires: FUNCTION  LeapYear

Remarks:

Example:



EWCDATE.DLL Page 32 of 64

LeapYear

Function

Purpose:  To determine if Year& is a Leap Year

Author/R eference: John P. G rillo, and J. D . Robe rtson, Subroutine Sandwich (New York:  John Wiley &

Sons, 1983, p. 40.

Syntax: l& = LeapYear (year&)

DECLARE FUNCTION LEAPYEAR ALIAS "LeapYear" (year&) EXPORT AS

LONG

Parameters: Year& =  long integer continaing a year (yyyy).

Remarks: Years divisible by 4 are leap years except for years divisible by 100 unless those years

are also divisible by 400.  Thus, 2000 is a leap year, but 1900 and 2100 are not.  The

reason for this adjustment is that from at least 730 AD it was known that the solar

year was somewhat short of 365.25 days, the assumed length of the year under the

Julian calendar.  When Pope Gregory XIII instituted calendar reform in 1582, as

part of that reform, he adopted the formula noted to keep the calendar closer to the

actual solar year.  Because the solar year is shortening, astronomers today keep the

Gregorian ca lendar in line by m aking a one se cond adjustm ent, as neede d, normally

on De cembe r 31 at mid night, whe never the  accumu lation of err ors nea rs one se cond. 

This function takes all of this into consideration.

Example:



EWCDATE.DLL Page 33 of 64

Labeling Days and Months

Given dates of some kind, it is frequently necessary provide labels (specifically, day names and m onth names)

for display.  In this DLL there are five functions that provide labeling capabilities:

FUNCTION LongDayName

FUNCTION ShortDayName

FUNCTION LongMonthName

FUNCTION ShortMonthName

FUNCTION CompDayName

The first four are quite generalized.  The long and short day name functions provide either a full day name

(i.e., "Monday") or an abbreviated 3-character day nam e (i.e., "Mon").  The only parameter required for these

functions is a day number where 1=Sunday and 7=Saturday.  Similarly, the long and short month name

functions provde full or abbreviated month name s.  The single parameter required is a mon th number where

1=January.

The Com pDayN ame function is on e of Rosen felder's and requ ires not a day na me but the co mputational d ate

calculated with FUNC TION C ompDate.  It is, therefore, less generalized than the other labeling functions.

Usage notes for the labeling functions follow:



EWCDATE.DLL Page 34 of 64

LongDayName

Function

Purpose:  To return a full day name for day-of-week.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: d$ = LongDayName (day&)

DECLARE FUNCTION LongDayName ALIAS "LongDayName" (day&)

EXPORT AS STRING

Parameters: day& = lon g integer containing a day-of-week number (1-7, 1=Sun day).

Remarks:

Example:



EWCDATE.DLL Page 35 of 64

ShortDayName

Function

Purpose:    To return a short day-of-week name.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: d$ = ShortDayName (day&)

DECL ARE  FUNC TION Sh ortDayNam e ALIAS  "ShortDayNam e" (day&) export

as string

Parameters: day& = lon g integer containing a day-of-week number (1-7, 1=Sun day).

Remarks:

Example:



EWCDATE.DLL Page 36 of 64

LongMonthName

Function

Purpose:    To return a full month name.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: m$ = LongMonthName (month&)

DECLARE FUNCTION LongMonthName ALIAS "LongMonthName" (month&)

export as string

Parameters: month& =  long integer containing a month number (1-12, 1=Jan uary).

Remarks:

Example:



EWCDATE.DLL Page 37 of 64

ShortMonthName

Function

Purpose:  To return a short month name.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: m$ = ShortMonthName (month&)

DECLARE FUNCTION ShortMonthName ALIAS "ShortMonthName" (month&)

export as string

Parameters: month& =  long integer containing a month number (1-12, 1=Jan uary).

Remarks:

Example:



EWCDATE.DLL Page 38 of 64

Specialized Utility Routines

It is sometimes necessary to find out very specific things about dates or to display them in some particular

fashion.  There a re several routine s that do just that:

SUB C urrentDa te

SUB G etTodaysD ate

FUNCTION  Today

FUN CTIO N Standa rdDate

FUNCTION  FirstSunday

FUNCTION  AnyDay

CurrentD ate converts the current date (acquired from the computer system) to month, day, and year

expressed as long integers.  When  dates are actually displayed, it is often useful to have the relevant numbers

converted to names or other strings.  This is accomplished with GetToday sDate  for the cur rent date .  Today

reports th e curren t date in sta ndard E nglsih.  In a  similar fash ion, StandardD ate provid es the c urren t date in

RFC  822 form at.  FirstSunday and AnyDay  provide the dates for the first Sunday in a given month/year and

the date for any nth day (third Thursday, for example) in a month.

Detail application notes follow:



EWCDATE.DLL Page 39 of 64

CurrentDate

Procedure

Purpose:  To return the current date as m&, d&, and y&.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: call CurrentDate (m&, d&, y&) or CurrentDate m& , d&, y&

DECLARE SUB CurrentDate ALIAS "CurrentDate" (m&, d&, y&) EXPORT

Parameters: Parameters are returned by CurrentDate.

m& =  long integer containing a month number (1-12, 1=Jan uary).

d& = long integer containing a day-of-month n umber (1-31).

y& = long integer continaing a year (yyyy).

Remarks:

Example:



EWCDATE.DLL Page 40 of 64

GetTodaysDate

Procedure

Purpose:  To report elements of the current useful for display.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: call GetTodaysDate (WkDay$,Dm$,Mnth$,Year$) or

GetTodaysD ate WkD ay$, Dm$, M nth$, Year$

DECLAR E SUB GetTodaysDate ALIAS "GetTodaysDate"

(WkDay$,Dm$,Mnth$,Year$) EXPORT

Parameters: Parameters are returned by sub GetTodaysDate.

WkDay$ - Weekday name.

Dm$ - M onth number with suffix (i.e., 10th).

Mnth$ - Month name.

Year$ - Four digit year.

Requires: FUNCTION  zeller

FUNCTION LongDayName

FUN CTIO N Com pDate

FUN CTIO N Com pDayO fMonth

FUNCTION LongMonthName

FUNCTION  CompDayNumber

Remarks:

Example:



EWCDATE.DLL Page 41 of 64

Today

Function

Purpose:  To report the current date in standard English.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: t$ = Today

DECLARE FUNCTION Today LIB "EWCDATE.DLL" ALIAS "Today" () AS

STRING

Parameters: None.

Requires: FUN CTIO N GetT odaysD ate

Remarks: Returns a string formatted as follows:

Today is Sunday, June 27th, 1999

Example:



EWCDATE.DLL Page 42 of 64

StandardDate

Function

Purpose:  Function to determine an RFC 822 standard date header line and related functions

and subprograms.  RFC 822 requires the following date/time format

Date:    26 Aug 76 1429 E DT (day, mon th, year, time, timezone).

Author/R eference: Thomas Wm . Madron (1998)

Syntax: d$ = Stan dardDa te

DECLAR E function StandardDate ALIAS "StandardDate" () export as string

Parameters: None.

Requires: FUN CTIO N Curr entDate

FUNCTION ShortMonthName

FUNCTION  FirstSunday

Remarks:

Example:



EWCDATE.DLL Page 43 of 64

FirstSunday

Function

Purpose:  To determine the date of the first Sunday of any given mo nth/year.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: f& = FirstSunday (month&, year&)

DECLARE FUNCTION FirstSunday ALIAS "FirstSunday" (month&, year&)

export AS LONG

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Year& =  long integer continaing a year (yyyy).

Requires: FUNCTION  zeller

Remarks: On input, Month and Year must contain the month and year of interest.  Day will be

returned as the date of the first sunday of the month and yea r of interest.  The first

Sunday will , of  course, occur sometime within the f irst seven days of the MONTH.

Example:



EWCDATE.DLL Page 44 of 64

AnyDay

Function

Purpose:  To determine the date for any N th day in a given month/year.

Author/R eference: Thomas Wm . Madron (1998)

Syntax: f& = AnyDay (month&, year&, seq&, wkdy&)

DECLARE FUNCTION AnyDay ALIAS "AnyDay" (month&, year&, seq&,

wkdy&) export AS LONG

Parameters: Month& =  long integer containing a month number (1-12, 1=Jan uary).

Year& =  long integer containing a year (yyyy).

seq& = long  integer containing the sequence number of the date sough t (i.e., [3]rd

Tuesday, [2]nd Wed nesday, etc.).

wkdy& =  long integer containing the day-of-week number for the day of interest

(1-7, 1=Sunday).

Requires: FUNCTION  zeller

FUN CTIO N Da ysInMon th

Remarks: On input, Month and Year must contain the month and year of interest.  Day will be

returned as the date of the Nth day of the month and year of interest.  If the function

returns zero (0), then the Nth day was no n-existant (i.e., the 5th Monday when there

was no 5th Mon day).

Example:



EWCDATE.DLL Page 45 of 64

WeekDay

Function

Purpose:  GIVEN  DAY NUM , FINDS D AY OF  WEE K (1=SU N; 2=M ON; ET C.) 

Author/Reference: Michael A. Covington, "A Calendar for the Ages," PC TECH JOU RNAL, vol. 3, no.

12, Dec . 85, pp. 136 ff.

Syntax: wd& = WeekDay (DN&)

DECLARE FUNCTION WeekDay LIB "EWCD ATE.DLL" ALIAS "WeekDay"

(DN&) AS LONG

Parameters: DN& = long integer containing day number from DayNum.

Requires: Nothing

Remarks:

Example:



EWCDATE.DLL Page 46 of 64

CompDayName

Function

Purpose:  Day of the week function.

Author/Reference: Lewis Rosenfelder, BA SIC FAST ER A ND BE TTER (U pland, CA:  IJG In c., 1981),

pp. 109-10.

Syntax: d$ = CompDayName(cmpdt&)

DECLARE FUNCTION CompDayName ALIAS "CompDayName" (cmpdt&)

export as string

Parameters: cmpdt& - Computational date calculated with CompDate.

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 47 of 64

MonthFromName

Function

Purpose:  To produce a month number from the month's English name.

Author/Reference: Thomas Wm . Madron (1999)

Syntax: d& = MonthFromName(Month$)

DECLA RE FUN CTION M onthFromName A LIAS "MonthFromN ame" (Month$)

EXPORT AS LONG

Parameters: Month$ - M onth name  (i.e., "January" or "JA N" or "Jan")

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 48 of 64

ParseEnglishDate

Procedure

Purpose:  To parse a date as commonly expressed in English in either U.S. or European

formats.

Author/Reference: Thomas Wm . Madron (1999)

Syntax: CALL ParseEnglishDate (datestr$,  month&, day&, year&, Ecode&)

Or

ParseEnglishDate datestr$, month&, day&, year&, Ecode&

DECLARE SUB ParseEnglishDate ALIAS "ParseEnglishDate" (datestr$,  m&, d&,

y&, Ecode&) EXPORT

Parameters: datestr$ - Date string (i.e., October 4, 1937, or 4 October 1937)

m& - returned m onth number.

d& - returned day (in mo nth) number.

y& - returned year.

Ecode& - N umber of elements in datestr$ (mu st = 3 or is invalid).

Requires: StrTok - local to this dll.

MonthFromName& - See documentation.

Remarks: Parses a date string in either US or European format:  US = MonthName

DayNum ber, Year (4 digits); or European =  DayNum ber MonthN ame Year (4

digits).  If datestr$ is properly p arsed, then E code& =  2, else this is not a prope rly

froma tted da te string .  Ecod e& is a ctually  return ed as t he num ber of e leme nts in

datestr$.  If the procedure failes, Ecode& < > 3 (the required num ber of elements),

and m&, d& , and y& are returned as ze ro (0), otherwise, m&, d&, an d y& are

returned as the appropriate num bers.  Ecode& is set to zero if the parse fails.  If

either m& or d& evaluate to zero, then Ecode& is returned as zero.

Example:



EWCDATE.DLL Page 49 of 64

Daylight Savings

Daylight saving tim e is the time during w hich clocks are set o ne hour or m ore ahead  of standard tim e to

provide more daylight at the end of the working day during late spring, summer, and early fall.  Daylight saving

time, also called SU MM ER TI ME, is a sys tem for uniform ly advancing  clocks , especially in summ er, so as to

extend daylight hours during conventional waking time. In the Northern Hemisphere, clocks are usually set

ahead one hour in late M arch or in April and are set back one hou r in late September or in October.

The practice was first suggested in a whimsical essay by Benjamin  Franklin in 1784. In 1907 an Englishman,

William Willett, campaigned for setting the clock ahead by 80 minutes in four moves of 20 minutes each during

the spring and summer months. In 1908 the House of Commons rejected a bill to advance the clock by one

hour in the spring and return to Greenwich Mean (standard) Time in the autumn.

Several countries, including Australia, Great Britain, Germany, and the United States, adopted summer

daylight saving time during World War I to conserve fuel by reducing the need for artificial light. During

World War II, clocks were kept continuously advanced by an hour in some nations--e.g., in the United States

from Feb. 9, 1942, to Sept. 30, 1945; and England used "do uble summer time" du ring part of the year,

advancing clocks two hours from the standard time during the summer and one hour during the winter

months.

In the United States, daylight saving time formerly began on the last Sunday in A pril and ended on the last

Sunday in October. In 1986 the U.S. Congress passed a law moving up the start of daylight saving time to the

first Sunday in April, while keeping its end date the same. In most of the countries of western Europe, daylight

saving time starts on the last Sunday in March and ends on the last Sunday in September. In Britain and many

other countries worldwide, it lasts from March 30 to October 26.  The material concerning the history and

practice of daylight saving tim e is taken from "D aylight saving time." Britannica CD. Vers ion 97. E ncyclo paed ia

Britannica , Inc., 1997. 

When dealing with dates it is sometimes useful to know whether a given date is part of daylight savings.  The

general problem with using daylight savings times is that the specific start and stop dates for daylight savings

are set legislatively by each nation.  The functions dealing with daylight saving time are based on the current

(June 27, 1999) U.S. standard.  The functions involved are:

FUNC TION D aySavStrt

FUNCTION  DaySavEnd

FUNCT ION DayLightSavings



EWCDATE.DLL Page 50 of 64

DaySavStrt

Function

Purpose:  To calculate the day of the year that Daylight Savings starts (in the US, the 1st

Sunday of April, 2:00 a.m.).

Author/Reference: Thomas Wm . Madron (1998)

Syntax: ds$ = DaySavStrt(year&)

DECLARE FUNCTION DaySavStrt ALIAS "DaySavStrt" (year&) export AS

LONG

Parameters: year& =  long integer containing a  four digit year of interst.

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 51 of 64

DaySavEnd

Function

Purpose:  To calculate the day of the year that Daylight Savings ends (in the US, the last

Sunday of October, 2:00 a.m.).

Author/Reference: Thomas Wm . Madron (1998)

Syntax: de$ = DaySavEnd(year&)

DECLARE FUNCTION DaySavEnd ALIAS "DaySavEnd" (year&) export AS

LONG

Parameters: year& =  long integer containing a  four digit year of interst.

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 52 of 64

DayLightSavings

Procedure

Purpose:  To determine weather a given date falls within the U.S. daylight saving period.

Author/Reference: Thomas Wm . Madron (1998)

Syntax: ds$ = DayLightSavings(month&,day&,year&)

DECL ARE   FUNC TION D ayLightSavings ALIAS "D aylightSaveings"

(month&,day&,year&) EXPORT AS LONG

Parameters: month&  - long integer containing the  month of interes t.

day& - long integer containing the day of interest (within month&).

year& =  long integer containing a  four digit year of interest.

Requires: FUNC TION D aySavStrt

FUNCTION  DaySavEnd

Remarks: Return value:  True (-1) if date in daylight savings, else False (0).

Example:



EWCDATE.DLL Page 53 of 64

Local Utility Functions

The following u tility functions are used, at this po int, only to support oth er routines and  are not accessible

from external programs.  The y are private to this DLL and cannot be a ccessed by other programs.

Support for the Covington collection:

FUNCTION rgtALIGN$

FUNCTION  DFrac

FUNCTION  Dint

FUNCTION  Floor

Support for the Madron collection:

SUB StrTok



EWCDATE.DLL Page 54 of 64

rtALIGN

Function

Purpose:  To right align text in a given length of screen space.

Author/Reference: Michael A. Covington, "A Calendar for the Ages," PC TECH JOU RNAL, vol. 3, no.

12, Dec . 85, pp. 136 ff.

Syntax: text$ = rgtALIGN(text$, length&)

DECLARE FUNCTION rgtALIGN$ ALIAS "rgtALIGN" (text$, length&)

Parameters: text$ - any arbitrary tex t.

length& - length of the field into which text is being right aligned.

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 55 of 64

DFrac

Function

Purpose:  To return the fractional part of a Real numb er.

Author/Reference: Michael A. Covington, "A Calendar for the Ages," PC TECH JOU RNAL, vol. 3, no.

12, Dec . 85, pp. 136 ff.

Syntax: Y# = Dfrac(X#)

DECLARE FU NCTION DFrac ALIAS "DFrac" (X#) AS DOUBLE

Parameters: X# = a double precision real number from which the fractional part is to be

extracted.

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 56 of 64

DInt

Function

Purpose:  To truncate to Double Precision.

Author/Reference: Michael A. Covington, "A Calendar for the Ages," PC TECH JOU RNAL, vol. 3, no.

12, Dec . 85, pp. 136 ff.

Syntax: Y# = Dint(X#)

DECLARE FU NCTION Dint ALIAS "Dint" (x#) AS DOUBLE

Parameters: X# = a double precision real number

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 57 of 64

Floor

Function

Purpose:  Find the largest whole number n ot greater than X# (a rea l number).

Author/Reference: Michael A. Covington, "A Calendar for the Ages," PC TECH JOU RNAL, vol. 3, no.

12, Dec . 85, pp. 136 ff.

Syntax: Y# = Floor(X#)

DECLARE FU NCTION Floor ALIAS "Floor" (X#) AS DOUBLE

Parameters: X# =  double precision real number.

Requires: Nothing.

Remarks:

Example:



EWCDATE.DLL Page 58 of 64

StrTok

Procedure

Purpose:  To parse a list of tokens and return them in Param s$(i).

Author/Reference: Thomas Wm . Madron (1998)

Syntax: StrTok Params$(), C ountParams& , Delimiter$, Tokens$

Or,

CALL StrTok (Params$(), CountParams& , Delimiter$, Tokens$)

DECLA RE SUB StrTok A LIAS "StrTok" (Params$(), CountParams&, Delimiter$,

Tokens$,  Ecode&)

Parameters: Params$() - a string array Dimensioned to the largest number of tokens that might

be encountered.

CountParams& - long integer returned as the number of tokens found.

Delimiter$ - the character(s) separating each token.

Tokens$ - a string containing the tokens to be parsed.

Ecode& - error code: 0=OK; -1=No Delimiter

Requires: Nothing.

Remarks: Similar in purpose to the C function StrTok, this procedure differs only in the fact

that all tokens are returned at once in an array rather than one at a time.  The

number of tokens is returned in Cou ntParams&.  O n input, a single Delimiter$ must

be specified or an error code (-1) will be returned; and one or more Tokens must be

contained in Token$, separated by Delimiter$.  Spaces can also be used

independently of Delimiter$ to make the input more readable.

Example:



EWCDATE.DLL Page 59 of 64

Sample Program
TSTDT.BAS

A small and simple sample program that exercises all the functions and sub programs described above is the following:

---------- Cut Here ----------

$INCLUDE "ewcdate.inc"

DECLARE FUNCTION padright$ (text$, padchar$, fieldlen%)

DECLARE FUNCTION edtnum$ (n&)

FUNCTION pbmain () AS LONG

CLS
stdout padright$("Function/Procedure"," ",29)+"Result"

stdout padright$("","=",28)+" "+padright$("","=",35)
CALL CurrentDate (m&, d&, y&):

stdout padright$("CurrentDate"," ",29)+edtnum$(m&)+" "+edtnum$(d&)+" "+edtnum$(y&)
stdout padright$("Long|ShortDayName"," ",29)+"Today is "+LongDayName(DayOfWeek(m&,d&,y&))+" or

"+ShortDayName (DayOfWeek(m&,d&,y&))
stdout padright$("Long|ShortMonthName"," ",29)+"This month is "+LongMonthName (m&)+" or

"+ShortMonthName (m&)
if DayLightSavings (m&, d&, y&) then

stdout padright$("DayLightSavings"," ",29)+"Time period is daylight savings."
else

stdout padright$("DayLightSavings"," ",29)+"Time period is standard."
end if

CALL GetTodaysDate (WkDay$,Dm$,Mnth$,Year$)

stdout padright$("GetTodaysDate"," ",29)+WkDay$+" "+Dm$+" "+Mnth$+" "+Year$

stdout padright$("Today"," ",29)+Today
stdout padright$("Julian"," ",29)+edtnum$(julian (m&, d&, y&))
CALL JulToDate (Julian(m&,d&,y&), ResultDate$)
stdout padright$("JulToDate"," ",29)+ResultDate$
stdout padright$("DayOfYear"," ",29)+edtnum$(DayOfYear (m&, d&, y&))

stdout padright$("DayOfWeek"," ",29)+edtnum$(DayOfWeek (m&, d&, y&))
stdout padright$("StandardDate"," ",29)+StandardDate

stdout padright$("Zeller"," ",29)+edtnum$(zeller (m&,d&,y&))



EWCDATE.DLL Page 60 of 64

stdout padright$("FirstSunday"," ",29)+edtnum$(FirstSunday (m&,y&))

stdout padright$("DaysInMonth"," ",29)+edtnum$(DaysInMonth (m&, y&))

tmp& = LeapYear(y&)

select case tmp&
case 0

ans$ = "No"

case -1

ans$ = "Yes"

end select

stdout padright$("LeapYear"," ",29)+"("+edtnum$(tmp&)+") "+ans$

dn& = DayNum (m&, d&, y&)

stdout padright$("DayNum"," ",29)+edtnum$(dn&)
call CALDAT (dn&, Month&, Day&, Year&)

stdout padright$("CalDate"," ",29)+edtnum$(Month&)+" "+edtnum$(Day&)+" "+edtnum$(Year&)
stdout padright$("WeekDay"," ",29)+edtnum$(WeekDay (dn&))

stdout padright$("JulianDate"," ",29)+edtnum$(JulianDate (m&, d&, y&))
cmpdt& = CompDate (m&, d&, y&)

stdout padright$("CompDate"," ",29)+edtnum$(cmpdt&)
stdout padright$("CompYear"," ",29)+edtnum$(CompYear (cmpdt&))
stdout padright$("CompDayNumber"," ",29)+edtnum$(CompDayNumber (cmpdt&))

stdout padright$("CompDayName"," ",29)+CompDayName (cmpdt&)

stdout padright$("CompDayOfMonth"," ",29)+edtnum$(CompDayOfMonth (y&, m&, CompDayNumber (cmpdt&)))

stdout padright$("AnyDay"," ",29)+edtnum$(AnyDay (m&, y&, 3, 3))+" (third tuesday)"

stdout padright$("MonthFromName"," ",29)+edtnum$(MonthFromName(LongMonthName(m&)))

datestr$ = LongMonthName(m&)+" "+edtnum$(d&)+", "+edtnum$(y&)

ParseEnglishDate datestr$, month&, day&, year&, Ecode&

stdout padright$("ParseEnglishDate"," ",29)+"("+datestr$+") = "+edtnum$(month&)+" "+edtnum$(day&)+"

"+edtnum$(year&)
stdout padright$("","=",64)
stdout "This test program executes all functions and subprograms in"
stdout "ewcdate.dll.  The resultsof this program can be redirected"
stdout "to a file for more liesurely inspection:  tstdt > filename.txt."
stdout "The output may also be paged using more, or if you have it,"

stdout "less:  tstdt | more, or tstdt | less."

stdout padright$("","=",64)
END FUNCTION

FUNCTION padright$ (text$, padchar$, fieldlen%)
    LOCAL i%



EWCDATE.DLL Page 61 of 64

    i% = LEN(text$)

    SELECT CASE i%

         CASE > fieldlen%

              padright$ = LEFT$(text$, fieldlen%)
         CASE = fieldlen%
              padright$ = text$

         CASE < fieldlen%

              padright$ = rtrim$(text$) + STRING$(fieldlen%-LEN(text$),padchar$)

         CASE ELSE

              EXIT SELECT

    END SELECT

END FUNCTION

FUNCTION edtnum$ (n&)
    '

    '   Present an integer number as a string without leading spaces.
     �   This could, of course, be replaced with the PBDLL function trim$.

    '
        edtnum$ = ltrim$(rtrim$(str$(n&)))
END FUNCTION



EWCDATE.DLL Page 62 of 64

Validity Testing
test.bas

This program is part of the distribution and verifies the adequacy of those functions and procedures using Julian-like numbers .

'   Test the accuracy of date to julian to date functions

'

$INCLUDE "j:\compiler\inc\ewcdate.inc"

FUNCTION PBMAIN () AS LONG
    CLS

    RANDOMIZE
    StartYear& = 1699

    EndYear& = 2099

    STDOUT "Julian and Computational Date Validation"
    STDOUT ""

    PRINT "Input","Source","Julian#","Result"
    PRINT "==========","==========","==========","=========="

    FOR Year& = StartYear& TO EndYear& STEP 100
        ' Grillo:

        month& = RND(1,12)

        ndays& = DaysInMonth (month&, year&)

        Day& = RND(1, ndays&)
        TestDate$ = TRIM$(STR$(Month&))+"/"+TRIM$(STR$(Day&))+"/"+TRIM$(STR$(Year&))

        grillo# = julian (Month&, Day&, Year&)

        CALL JulToDate (grillo#, ResultDate$)

        PRINT TestDate$, "Grillo", STR$(grillo#), ResultDate$

    NEXT year&

    STDOUT ""

    FOR year& = StartYear& TO EndYear& STEP 100

        ' Covington
        month& = RND(1,12)

        ndays& = DaysInMonth (month&, year&)

        Day& = RND(1, ndays&)

        TestDate$ = TRIM$(STR$(Month&))+"/"+TRIM$(STR$(Day&))+"/"+TRIM$(STR$(Year&))

        covington& = DayNum (Month&, Day&, Year&)

        CALL CalDat (covington&, m&, d&, y&)



EWCDATE.DLL Page 63 of 64

  PRINT TestDate$, "Covington", STR$(covington&), _

TRIM$(STR$(m&))+"/"+TRIM$(STR$(d&))+"/"+TRIM$(STR$(y&))

    NEXT year&

    STDOUT ""
    FOR year& = StartYear& TO EndYear& STEP 100

        ' Rosenfelder

        month& = RND(1,12)

        ndays& = DaysInMonth (month&, year&)

        Day& = RND(1, ndays&)

        TestDate$ = TRIM$(STR$(Month&))+"/"+TRIM$(STR$(Day&))+"/"+TRIM$(STR$(Year&))

        rosenfelder& = CompDate (month&, day&, year&)
        y& = CompYear(rosenfelder&)

        m& = CompMonth (rosenfelder&, y&)
        cmpdaynum& = CompDayNumber (rosenfelder&)

        d& = CompDayOfMonth (y&, m&, cmpdaynum&)
  PRINT TestDate$, "Rosenfelder", STR$(rosenfelder&), _

TRIM$(STR$(m&))+"/"+TRIM$(STR$(d&))+"/"+TRIM$(STR$(y&))
    NEXT year&

END FUNCTION



EWCDATE.DLL Page 64 of 64

Bibliography

Michael A . Covington, "A  Calenda r for the Ages ," PC TECH JOURNAL, vol. 3, no. 12 , Dec. 85 , pp. 136ff.

John P. G rillo, and J. D . Robe rtson, SUBROUTINE SANDWICH (New York :  John Wiley & Sons, 1983).

John P. G rillo and J. D . Robe rtson, MORE SUBROUTINE SANDWICH (New York :  John Wiley & Sons,

1983).

Jean M eeus, ASTRONOMICAL FORM ULAE FOR CALCULATO RS, 2nd Edition (R ichmond, V A: 

Willmann-Bell, 1982).

J. D. Rob ertson, "Rem ark on A lgorithm 398," COMMUNICATIONS OF THE ACM, Vol. 15, No. 10, 1972, p.

918.

Lewis R osenfeld er, BASIC FASTER AND BETTER (Upland, CA : IJG Inc., 1981).

"Julian Period." Britannica CD. Version  97. Ency clopaed ia Britann ica, Inc., 1997 . 

"Daylight saving tim e." Britannica CD. Version  97. Ency clopaed ia Britann ica, Inc., 1997 . 


